Factorization of vector measures and their integration operators
Colloquium Mathematicum, Tome 144 (2016) no. 1, pp. 115-125.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ be a Banach space and $\nu $ a countably additive $X$-valued measure defined on a $\sigma $-algebra. We discuss some generation properties of the Banach space $L^1(\nu )$ and its connection with uniform Eberlein compacta. In this way, we provide a new proof that $L^1(\nu )$ is weakly compactly generated and embeds isomorphically into a Hilbert generated Banach space. The Davis–Figiel–Johnson–Pełczyński factorization of the integration operator $I_\nu : L^1(\nu )\to X$ is also analyzed. As a result, we prove that if $I_\nu $ is both completely continuous and Asplund, then $\nu $ has finite variation and $L^1(\nu )=L^1(|\nu |)$ with equivalent norms.
DOI : 10.4064/cm6735-11-2015
Keywords: banach space countably additive x valued measure defined sigma algebra discuss generation properties banach space its connection uniform eberlein compacta provide proof weakly compactly generated embeds isomorphically hilbert generated banach space davis figiel johnson czy ski factorization integration operator analyzed result prove completely continuous asplund has finite variation equivalent norms

José Rodríguez 1

1 Departamento de Matemática Aplicada Facultad de Informática Universidad de Murcia 30100 Espinardo (Murcia), Spain
@article{10_4064_cm6735_11_2015,
     author = {Jos\'e Rodr{\'\i}guez},
     title = {Factorization of vector measures and their integration operators},
     journal = {Colloquium Mathematicum},
     pages = {115--125},
     publisher = {mathdoc},
     volume = {144},
     number = {1},
     year = {2016},
     doi = {10.4064/cm6735-11-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6735-11-2015/}
}
TY  - JOUR
AU  - José Rodríguez
TI  - Factorization of vector measures and their integration operators
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 115
EP  - 125
VL  - 144
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6735-11-2015/
DO  - 10.4064/cm6735-11-2015
LA  - en
ID  - 10_4064_cm6735_11_2015
ER  - 
%0 Journal Article
%A José Rodríguez
%T Factorization of vector measures and their integration operators
%J Colloquium Mathematicum
%D 2016
%P 115-125
%V 144
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6735-11-2015/
%R 10.4064/cm6735-11-2015
%G en
%F 10_4064_cm6735_11_2015
José Rodríguez. Factorization of vector measures and their integration operators. Colloquium Mathematicum, Tome 144 (2016) no. 1, pp. 115-125. doi : 10.4064/cm6735-11-2015. http://geodesic.mathdoc.fr/articles/10.4064/cm6735-11-2015/

Cité par Sources :