Solyanik estimates in ergodic theory
Colloquium Mathematicum, Tome 145 (2016) no. 2, pp. 193-207
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $U_1, \ldots, U_n$ be a collection of commuting measure preserving transformations on a probability space $(\varOmega, \varSigma, \mu)$. Associated with these transformations is the ergodic strong maximal operator $\mathsf M _{\mathsf S} ^*$ given by
$$
\mathsf M _{\mathsf S} ^* f(\omega) := \sup_{0 \in R \subset \mathbb{R}^n}\frac{1}{\#(R \cap \mathbb{Z}^n)}\sum_{(j_1, \ldots, j_n) \in R\cap \mathbb{Z}^n}|f(U_1^{j_1}\cdots U_n^{j_n}\omega)|,
$$
where the supremum is taken over all open rectangles in $\mathbb{R}^n$ containing the origin whose sides are parallel to the coordinate axes. For $0 \lt \alpha \lt 1$ we define the sharp Tauberian constant of $\mathsf M _{\mathsf S} ^*$ with respect to $\alpha$ by
$$
\mathsf C^* _{\mathsf S} (\alpha) := \sup_{\substack{E \subset \varOmega \\ \mu(E) \gt 0}}\frac{1}{\mu(E)}\mu(\{\omega \in \varOmega : \mathsf M _{\mathsf S} ^* \chi_E (\omega) \gt \alpha\}).
$$
Motivated by previous work of A. A. Solyanik and the authors regarding Solyanik estimates for the geometric strong maximal operator in harmonic analysis, we show that the Solyanik estimate
$$
\lim_{\alpha \rightarrow 1}\mathsf C^* _{\mathsf S}(\alpha) = 1
$$
holds, and that in particular \[\mathsf C^* _{\mathsf S}(\alpha) - 1 \lesssim_n ({1}/{\alpha} - 1)^{1/n}\]
provided that $\alpha$ is sufficiently close to $1$. Solyanik estimates for centered and uncentered ergodic Hardy–Littlewood maximal operators associated with $U_1, \ldots, U_n$ are shown to hold as well. Further directions for research in the field of ergodic Solyanik estimates are also discussed.
Keywords:
ldots collection commuting measure preserving transformations probability space varomega varsigma associated these transformations ergodic strong maximal operator mathsf mathsf * given mathsf mathsf * omega sup subset mathbb frac cap mathbb sum ldots cap mathbb cdots omega where supremum taken rectangles mathbb containing origin whose sides parallel coordinate axes alpha define sharp tauberian constant mathsf mathsf * respect alpha mathsf * mathsf alpha sup substack subset varomega frac omega varomega mathsf mathsf * chi omega alpha motivated previous work solyanik authors regarding solyanik estimates geometric strong maximal operator harmonic analysis solyanik estimate lim alpha rightarrow mathsf * mathsf alpha holds particular mathsf * mathsf alpha lesssim alpha provided alpha sufficiently close solyanik estimates centered uncentered ergodic hardy littlewood maximal operators associated ldots shown further directions research field ergodic solyanik estimates discussed
Affiliations des auteurs :
Paul Hagelstein 1 ; Ioannis Parissis 2
@article{10_4064_cm6729_2_2016,
author = {Paul Hagelstein and Ioannis Parissis},
title = {Solyanik estimates in ergodic theory},
journal = {Colloquium Mathematicum},
pages = {193--207},
publisher = {mathdoc},
volume = {145},
number = {2},
year = {2016},
doi = {10.4064/cm6729-2-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6729-2-2016/}
}
TY - JOUR AU - Paul Hagelstein AU - Ioannis Parissis TI - Solyanik estimates in ergodic theory JO - Colloquium Mathematicum PY - 2016 SP - 193 EP - 207 VL - 145 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6729-2-2016/ DO - 10.4064/cm6729-2-2016 LA - en ID - 10_4064_cm6729_2_2016 ER -
Paul Hagelstein; Ioannis Parissis. Solyanik estimates in ergodic theory. Colloquium Mathematicum, Tome 145 (2016) no. 2, pp. 193-207. doi: 10.4064/cm6729-2-2016
Cité par Sources :