On Dipper–Mathas’s Morita equivalences
Colloquium Mathematicum, Tome 149 (2017) no. 1, pp. 103-123.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Dipper and Mathas have proved that every Ariki–Koike algebra (i.e., nondegenerate cyclotomic Hecke algebra of type $G(\ell ,1,n)$) is Morita equivalent to a direct sum of tensor products of some smaller Ariki–Koike algebras which have $q$-connected parameter sets. They proved this result by explicitly constructing a progenerator which induces this equivalence. In this paper we use the nondegenerate affine Hecke algebra $\mathcal {H}^{\rm aff}_n$ to derive Dipper–Mathas’s Morita equivalence as a consequence of an equivalence between the block $\mathcal {H}^{\rm aff}_n\mbox {-mod}[{\boldsymbol \gamma }]$ of the category of finite-dimensional modules over $\mathcal {H}^{\rm aff}_n$ and the block $\mathcal {H}^{\rm aff}_{n_1}\otimes \dots \otimes \mathcal {H}^{\rm aff}_{n_r}\mbox {-mod}[({\boldsymbol \gamma }^{(1)},\dots ,{\boldsymbol \gamma }^{(r)})]$ of the category of finite-dimensional modules over the parabolic subalgebra $\mathcal {H}^{\rm aff}_{n_1}\otimes \dots \otimes \mathcal {H}^{\rm aff}_{n_r}$ under certain conditions on ${\boldsymbol \gamma },{\boldsymbol \gamma }^{(1)},\ldots ,{\boldsymbol \gamma }^{(r)}$. Similar results for the degenerate versions of these algebras are also obtained.
DOI : 10.4064/cm6711-7-2016
Keywords: dipper mathas have proved every ariki koike algebra nondegenerate cyclotomic hecke algebra type ell morita equivalent direct sum tensor products smaller ariki koike algebras which have q connected parameter sets proved result explicitly constructing progenerator which induces equivalence paper nondegenerate affine hecke algebra mathcal aff derive dipper mathas morita equivalence consequence equivalence between block mathcal aff mbox mod boldsymbol gamma category finite dimensional modules mathcal aff block mathcal aff otimes dots otimes mathcal aff mbox mod boldsymbol gamma dots boldsymbol gamma category finite dimensional modules parabolic subalgebra mathcal aff otimes dots otimes mathcal aff under certain conditions boldsymbol gamma boldsymbol gamma ldots boldsymbol gamma similar results degenerate versions these algebras obtained

Jun Hu 1 ; Kai Zhou 2

1 Department of Mathematics Beijing Institute of Technology 100081, Beijing, P.R. China
2 Department of Mathematics Zhejiang University 310027, Hangzhou, P.R. China
@article{10_4064_cm6711_7_2016,
     author = {Jun Hu and Kai Zhou},
     title = {On {Dipper{\textendash}Mathas{\textquoteright}s} {Morita} equivalences},
     journal = {Colloquium Mathematicum},
     pages = {103--123},
     publisher = {mathdoc},
     volume = {149},
     number = {1},
     year = {2017},
     doi = {10.4064/cm6711-7-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6711-7-2016/}
}
TY  - JOUR
AU  - Jun Hu
AU  - Kai Zhou
TI  - On Dipper–Mathas’s Morita equivalences
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 103
EP  - 123
VL  - 149
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6711-7-2016/
DO  - 10.4064/cm6711-7-2016
LA  - en
ID  - 10_4064_cm6711_7_2016
ER  - 
%0 Journal Article
%A Jun Hu
%A Kai Zhou
%T On Dipper–Mathas’s Morita equivalences
%J Colloquium Mathematicum
%D 2017
%P 103-123
%V 149
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6711-7-2016/
%R 10.4064/cm6711-7-2016
%G en
%F 10_4064_cm6711_7_2016
Jun Hu; Kai Zhou. On Dipper–Mathas’s Morita equivalences. Colloquium Mathematicum, Tome 149 (2017) no. 1, pp. 103-123. doi : 10.4064/cm6711-7-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6711-7-2016/

Cité par Sources :