A problem of G. Q. Wang on the Davenport constant of the multiplicative semigroup of quotient rings of $\mathbb {F}_2[x]$
Colloquium Mathematicum, Tome 148 (2017) no. 1, pp. 123-130.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a finite commutative semigroup $\mathcal{S}$ (written multiplicatively), denote by ${\rm D}(\mathcal{S})$ the Davenport constant of $\mathcal{S}$, the least positive integer $\ell$ such that for any $x_1,\ldots,x_{\ell}\in \mathcal{S}$ there exists a set $I\subsetneq [1,\ell]$ for which $\prod_{i\in I} x_i=\prod_{i=1}^{\ell} x_i$, the equality being interpreted in the conditional unitization of $\mathcal{S}$ to make sense of the left-hand side also in the case when $I=\emptyset$ and $\mathcal{S}$ is not unitary. Then, let $R$ be the quotient ring of $\mathbb{F}_2[x]$ by the principal ideal generated by a nonconstant polynomial $f\in \mathbb{F}_2[x]$. Moreover, let $\mathcal{S}_R$ be the multiplicative semigroup of the cosets in $R$, and ${\rm U}(\mathcal{S}_R)$ the group of units of $\mathcal{S}_R$. We prove that $${\rm D}({\rm U}(\mathcal{S}_R))\leq {\rm D}(\mathcal{S}_R)\leq {\rm D}({\rm U}(\mathcal{S}_R))+\delta_f,$$ where $$ \delta_f=\begin{cases}0 \textrm{if $\gcd(x*(x+1_{\mathbb{F}_2}), f)=1_{\mathbb F_{2}}$,}\\ 1 \textrm{if $\gcd(x*(x+1_{\mathbb{F}_2}), f)\in \{x, x+1_{\mathbb{F}_2}\}$,}\\ 2 \textrm{if $\gcd(x*(x+1_{\mathbb{F}_2}),f)=x*(x+1_{\mathbb{F}_2}) $.}\\ \end{cases} $$ This gives a partial answer to an open problem of G. Q. Wang.
DOI : 10.4064/cm6707-6-2016
Keywords: given finite commutative semigroup mathcal written multiplicatively denote mathcal davenport constant mathcal least positive integer ell ldots ell mathcal there exists set subsetneq ell which prod prod ell equality being interpreted conditional unitization mathcal make sense left hand side emptyset mathcal unitary quotient ring mathbb principal ideal generated nonconstant polynomial mathbb moreover mathcal multiplicative semigroup cosets mathcal group units mathcal prove mathcal leq mathcal leq mathcal delta where delta begin cases textrm gcd x* mathbb mathbb textrm gcd x* mathbb mathbb textrm gcd x* mathbb x* mathbb end cases gives partial answer problem wang

Lizhen Zhang 1 ; Haoli Wang 2 ; Yongke Qu 3

1 Shanghai Institute of Applied Mathematics and Mechanics Shanghai University Shanghai, 200072, P.R. China and Department of Mathematics Tianjin Polytechnic University Tianjin, 300387, P.R. China
2 College of Computer and Information Engineering Tianjin Normal University Tianjin, 300387, P.R. China
3 Department of Mathematics Luoyang Normal University Luoyang, 471022, P.R. China
@article{10_4064_cm6707_6_2016,
     author = {Lizhen Zhang and Haoli Wang and Yongke Qu},
     title = {A problem of {G.} {Q.} {Wang} on the {Davenport} constant of the multiplicative semigroup of quotient rings of $\mathbb {F}_2[x]$},
     journal = {Colloquium Mathematicum},
     pages = {123--130},
     publisher = {mathdoc},
     volume = {148},
     number = {1},
     year = {2017},
     doi = {10.4064/cm6707-6-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6707-6-2016/}
}
TY  - JOUR
AU  - Lizhen Zhang
AU  - Haoli Wang
AU  - Yongke Qu
TI  - A problem of G. Q. Wang on the Davenport constant of the multiplicative semigroup of quotient rings of $\mathbb {F}_2[x]$
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 123
EP  - 130
VL  - 148
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6707-6-2016/
DO  - 10.4064/cm6707-6-2016
LA  - en
ID  - 10_4064_cm6707_6_2016
ER  - 
%0 Journal Article
%A Lizhen Zhang
%A Haoli Wang
%A Yongke Qu
%T A problem of G. Q. Wang on the Davenport constant of the multiplicative semigroup of quotient rings of $\mathbb {F}_2[x]$
%J Colloquium Mathematicum
%D 2017
%P 123-130
%V 148
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6707-6-2016/
%R 10.4064/cm6707-6-2016
%G en
%F 10_4064_cm6707_6_2016
Lizhen Zhang; Haoli Wang; Yongke Qu. A problem of G. Q. Wang on the Davenport constant of the multiplicative semigroup of quotient rings of $\mathbb {F}_2[x]$. Colloquium Mathematicum, Tome 148 (2017) no. 1, pp. 123-130. doi : 10.4064/cm6707-6-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6707-6-2016/

Cité par Sources :