On degrees of three algebraic numbers with zero sum or unit product
Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 159-167
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $\alpha $, $\beta $ and $\gamma $ be algebraic numbers of respective degrees $a$, $b$ and $c$ over $\mathbb Q$ such that $\alpha + \beta + \gamma = 0$. We prove that there exist algebraic numbers $\alpha _1$, $\beta _1$ and $\gamma _1$ of the same respective degrees $a$, $b$ and $c$ over $\mathbb Q$ such that $\alpha _1 \beta _1 \gamma _1 = 1$. This proves a previously formulated conjecture. We also investigate the problem of describing the set of triplets $(a,b,c)\in \mathbb N^3$ for which there exist finite field extensions $K/k$ and $L/k$ (of a fixed field $k$) of degrees $a$ and $b$, respectively, such that the degree of the compositum $KL$ over $k$ equals $c$. Towards another earlier formulated conjecture, under certain natural assumptions (related to the inverse Galois problem), we show that the set of such triplets forms a multiplicative semigroup.
Keywords:
alpha beta gamma algebraic numbers respective degrees mathbb alpha beta gamma prove there exist algebraic numbers alpha beta gamma respective degrees mathbb alpha beta gamma proves previously formulated conjecture investigate problem describing set triplets mathbb which there exist finite field extensions fixed field degrees respectively degree compositum equals towards another earlier formulated conjecture under certain natural assumptions related inverse galois problem set triplets forms multiplicative semigroup
Affiliations des auteurs :
Paulius Drungilas 1 ; Artūras Dubickas 2
@article{10_4064_cm6634_12_2015,
author = {Paulius Drungilas and Art\={u}ras Dubickas},
title = {On degrees of three algebraic numbers with zero sum or unit product},
journal = {Colloquium Mathematicum},
pages = {159--167},
year = {2016},
volume = {143},
number = {2},
doi = {10.4064/cm6634-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6634-12-2015/}
}
TY - JOUR AU - Paulius Drungilas AU - Artūras Dubickas TI - On degrees of three algebraic numbers with zero sum or unit product JO - Colloquium Mathematicum PY - 2016 SP - 159 EP - 167 VL - 143 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6634-12-2015/ DO - 10.4064/cm6634-12-2015 LA - en ID - 10_4064_cm6634_12_2015 ER -
%0 Journal Article %A Paulius Drungilas %A Artūras Dubickas %T On degrees of three algebraic numbers with zero sum or unit product %J Colloquium Mathematicum %D 2016 %P 159-167 %V 143 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm6634-12-2015/ %R 10.4064/cm6634-12-2015 %G en %F 10_4064_cm6634_12_2015
Paulius Drungilas; Artūras Dubickas. On degrees of three algebraic numbers with zero sum or unit product. Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 159-167. doi: 10.4064/cm6634-12-2015
Cité par Sources :