On degrees of three algebraic numbers with zero sum or unit product
Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 159-167.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\alpha $, $\beta $ and $\gamma $ be algebraic numbers of respective degrees $a$, $b$ and $c$ over $\mathbb Q$ such that $\alpha + \beta + \gamma = 0$. We prove that there exist algebraic numbers $\alpha _1$, $\beta _1$ and $\gamma _1$ of the same respective degrees $a$, $b$ and $c$ over $\mathbb Q$ such that $\alpha _1 \beta _1 \gamma _1 = 1$. This proves a previously formulated conjecture. We also investigate the problem of describing the set of triplets $(a,b,c)\in \mathbb N^3$ for which there exist finite field extensions $K/k$ and $L/k$ (of a fixed field $k$) of degrees $a$ and $b$, respectively, such that the degree of the compositum $KL$ over $k$ equals $c$. Towards another earlier formulated conjecture, under certain natural assumptions (related to the inverse Galois problem), we show that the set of such triplets forms a multiplicative semigroup.
DOI : 10.4064/cm6634-12-2015
Keywords: alpha beta gamma algebraic numbers respective degrees mathbb alpha beta gamma prove there exist algebraic numbers alpha beta gamma respective degrees mathbb alpha beta gamma proves previously formulated conjecture investigate problem describing set triplets mathbb which there exist finite field extensions fixed field degrees respectively degree compositum equals towards another earlier formulated conjecture under certain natural assumptions related inverse galois problem set triplets forms multiplicative semigroup

Paulius Drungilas 1 ; Artūras Dubickas 2

1 Department of Mathematics and Informatics Vilnius University Naugarduko 24 Vilnius LT-03225, Lithuania
2 Department of Mathematics and Informatics Vilnius University Naugarduko 24 Vilnius LT-03225, Lithuania and Institute of Mathematics and Informatics Vilnius University Akademijos 4 Vilnius LT-08663, Lithuania
@article{10_4064_cm6634_12_2015,
     author = {Paulius Drungilas and Art\={u}ras Dubickas},
     title = {On degrees of three algebraic numbers with zero sum or unit product},
     journal = {Colloquium Mathematicum},
     pages = {159--167},
     publisher = {mathdoc},
     volume = {143},
     number = {2},
     year = {2016},
     doi = {10.4064/cm6634-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6634-12-2015/}
}
TY  - JOUR
AU  - Paulius Drungilas
AU  - Artūras Dubickas
TI  - On degrees of three algebraic numbers with zero sum or unit product
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 159
EP  - 167
VL  - 143
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6634-12-2015/
DO  - 10.4064/cm6634-12-2015
LA  - en
ID  - 10_4064_cm6634_12_2015
ER  - 
%0 Journal Article
%A Paulius Drungilas
%A Artūras Dubickas
%T On degrees of three algebraic numbers with zero sum or unit product
%J Colloquium Mathematicum
%D 2016
%P 159-167
%V 143
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6634-12-2015/
%R 10.4064/cm6634-12-2015
%G en
%F 10_4064_cm6634_12_2015
Paulius Drungilas; Artūras Dubickas. On degrees of three algebraic numbers with zero sum or unit product. Colloquium Mathematicum, Tome 143 (2016) no. 2, pp. 159-167. doi : 10.4064/cm6634-12-2015. http://geodesic.mathdoc.fr/articles/10.4064/cm6634-12-2015/

Cité par Sources :