Adjacent dyadic systems and the $L^p$-boundedness of shift operators in metric spaces revisited
Colloquium Mathematicum, Tome 145 (2016) no. 1, pp. 121-135
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
With the help of recent adjacent dyadic constructions by Hytönen and the author, we give an alternative proof of results of Lechner, Müller and Passenbrunner about the $L^p$-boundedness of shift operators acting on functions $f \in L^p(X;E)$ where $1 \lt p \lt \infty $, $X$ is a metric space and $E$ is a UMD space.
Keywords:
help recent adjacent dyadic constructions hyt nen author alternative proof results lechner ller passenbrunner about p boundedness shift operators acting functions e where infty metric space umd space
Affiliations des auteurs :
Olli Tapiola 1
@article{10_4064_cm6594_11_2015,
author = {Olli Tapiola},
title = {Adjacent dyadic systems and the $L^p$-boundedness of shift operators in metric spaces revisited},
journal = {Colloquium Mathematicum},
pages = {121--135},
publisher = {mathdoc},
volume = {145},
number = {1},
year = {2016},
doi = {10.4064/cm6594-11-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6594-11-2015/}
}
TY - JOUR AU - Olli Tapiola TI - Adjacent dyadic systems and the $L^p$-boundedness of shift operators in metric spaces revisited JO - Colloquium Mathematicum PY - 2016 SP - 121 EP - 135 VL - 145 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6594-11-2015/ DO - 10.4064/cm6594-11-2015 LA - en ID - 10_4064_cm6594_11_2015 ER -
%0 Journal Article %A Olli Tapiola %T Adjacent dyadic systems and the $L^p$-boundedness of shift operators in metric spaces revisited %J Colloquium Mathematicum %D 2016 %P 121-135 %V 145 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm6594-11-2015/ %R 10.4064/cm6594-11-2015 %G en %F 10_4064_cm6594_11_2015
Olli Tapiola. Adjacent dyadic systems and the $L^p$-boundedness of shift operators in metric spaces revisited. Colloquium Mathematicum, Tome 145 (2016) no. 1, pp. 121-135. doi: 10.4064/cm6594-11-2015
Cité par Sources :