Adjacent dyadic systems and the $L^p$-boundedness of shift operators in metric spaces revisited
Colloquium Mathematicum, Tome 145 (2016) no. 1, pp. 121-135.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

With the help of recent adjacent dyadic constructions by Hytönen and the author, we give an alternative proof of results of Lechner, Müller and Passenbrunner about the $L^p$-boundedness of shift operators acting on functions $f \in L^p(X;E)$ where $1 \lt p \lt \infty $, $X$ is a metric space and $E$ is a UMD space.
DOI : 10.4064/cm6594-11-2015
Keywords: help recent adjacent dyadic constructions hyt nen author alternative proof results lechner ller passenbrunner about p boundedness shift operators acting functions e where infty metric space umd space

Olli Tapiola 1

1 Department of Mathematics and Statistics P.O. Box 68 (Gustaf Hällströmin katu 2b) FI-00014 University of Helsinki, Finland
@article{10_4064_cm6594_11_2015,
     author = {Olli Tapiola},
     title = {Adjacent dyadic systems and the $L^p$-boundedness of shift operators in metric spaces revisited},
     journal = {Colloquium Mathematicum},
     pages = {121--135},
     publisher = {mathdoc},
     volume = {145},
     number = {1},
     year = {2016},
     doi = {10.4064/cm6594-11-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6594-11-2015/}
}
TY  - JOUR
AU  - Olli Tapiola
TI  - Adjacent dyadic systems and the $L^p$-boundedness of shift operators in metric spaces revisited
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 121
EP  - 135
VL  - 145
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6594-11-2015/
DO  - 10.4064/cm6594-11-2015
LA  - en
ID  - 10_4064_cm6594_11_2015
ER  - 
%0 Journal Article
%A Olli Tapiola
%T Adjacent dyadic systems and the $L^p$-boundedness of shift operators in metric spaces revisited
%J Colloquium Mathematicum
%D 2016
%P 121-135
%V 145
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6594-11-2015/
%R 10.4064/cm6594-11-2015
%G en
%F 10_4064_cm6594_11_2015
Olli Tapiola. Adjacent dyadic systems and the $L^p$-boundedness of shift operators in metric spaces revisited. Colloquium Mathematicum, Tome 145 (2016) no. 1, pp. 121-135. doi : 10.4064/cm6594-11-2015. http://geodesic.mathdoc.fr/articles/10.4064/cm6594-11-2015/

Cité par Sources :