Cells and $n$-fold hyperspaces
Colloquium Mathematicum, Tome 145 (2016) no. 2, pp. 157-166
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that $X$ is a hereditarily indecomposable metric continuum if and only if the $n$-fold hyperspace ${\mathcal C}_n(X)$ does not contain $(n+1)$-cells, for any positive integer $n$. Also we characterize the class of continua whose $n$-fold hyperspaces and $n$-fold hyperspace suspensions are cells.
Keywords:
prove hereditarily indecomposable metric continuum only n fold hyperspace mathcal does contain cells positive integer characterize class continua whose n fold hyperspaces n fold hyperspace suspensions cells
Affiliations des auteurs :
Javier Camargo 1 ; Daniel Herrera 2 ; Sergio Macías 3
@article{10_4064_cm6527_1_2016,
author = {Javier Camargo and Daniel Herrera and Sergio Mac{\'\i}as},
title = {Cells and $n$-fold hyperspaces},
journal = {Colloquium Mathematicum},
pages = {157--166},
publisher = {mathdoc},
volume = {145},
number = {2},
year = {2016},
doi = {10.4064/cm6527-1-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6527-1-2016/}
}
TY - JOUR AU - Javier Camargo AU - Daniel Herrera AU - Sergio Macías TI - Cells and $n$-fold hyperspaces JO - Colloquium Mathematicum PY - 2016 SP - 157 EP - 166 VL - 145 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6527-1-2016/ DO - 10.4064/cm6527-1-2016 LA - en ID - 10_4064_cm6527_1_2016 ER -
Javier Camargo; Daniel Herrera; Sergio Macías. Cells and $n$-fold hyperspaces. Colloquium Mathematicum, Tome 145 (2016) no. 2, pp. 157-166. doi: 10.4064/cm6527-1-2016
Cité par Sources :