Iterated quasi-arithmetic mean-type mappings
Colloquium Mathematicum, Tome 144 (2016) no. 2, pp. 215-228.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We work with a fixed $N$-tuple of quasi-arithmetic means $M_1,\dots ,M_N$ generated by an $N$-tuple of continuous monotone functions $f_1,\dots ,f_N: I \to \mathbb {R}$ ($I$ an interval) satisfying certain regularity conditions. It is known [initially Gauss, later Gustin, Borwein, Toader, Lehmer, Schoenberg, Foster, Philips et al.] that the iterations of the mapping $I^N \ni b \mapsto (M_1(b),\dots ,M_N(b))$ tend pointwise to a mapping having values on the diagonal of $I^N$. Each of [all equal] coordinates of the limit is a new mean, called the Gaussian product of the means $M_1,\dots ,M_N$ taken on $b$. We effectively measure the speed of convergence to that Gaussian product by producing an effective—doubly exponential with fractional base—majorization of the error.
DOI : 10.4064/cm6479-2-2016
Keywords: work fixed n tuple quasi arithmetic means dots generated n tuple continuous monotone functions dots mathbb interval satisfying certain regularity conditions known initially gauss later gustin borwein toader lehmer schoenberg foster philips iterations mapping mapsto dots tend pointwise mapping having values diagonal each equal coordinates limit mean called gaussian product means dots taken nbsp effectively measure speed convergence gaussian product producing effective doubly exponential fractional base majorization error

Paweł Pasteczka 1

1 Institute of Mathematics Pedagogical University of Cracow Podchorążych 2 30-084 Kraków, Poland
@article{10_4064_cm6479_2_2016,
     author = {Pawe{\l} Pasteczka},
     title = {Iterated quasi-arithmetic mean-type mappings},
     journal = {Colloquium Mathematicum},
     pages = {215--228},
     publisher = {mathdoc},
     volume = {144},
     number = {2},
     year = {2016},
     doi = {10.4064/cm6479-2-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6479-2-2016/}
}
TY  - JOUR
AU  - Paweł Pasteczka
TI  - Iterated quasi-arithmetic mean-type mappings
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 215
EP  - 228
VL  - 144
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6479-2-2016/
DO  - 10.4064/cm6479-2-2016
LA  - en
ID  - 10_4064_cm6479_2_2016
ER  - 
%0 Journal Article
%A Paweł Pasteczka
%T Iterated quasi-arithmetic mean-type mappings
%J Colloquium Mathematicum
%D 2016
%P 215-228
%V 144
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6479-2-2016/
%R 10.4064/cm6479-2-2016
%G en
%F 10_4064_cm6479_2_2016
Paweł Pasteczka. Iterated quasi-arithmetic mean-type mappings. Colloquium Mathematicum, Tome 144 (2016) no. 2, pp. 215-228. doi : 10.4064/cm6479-2-2016. http://geodesic.mathdoc.fr/articles/10.4064/cm6479-2-2016/

Cité par Sources :