Number of solutions in a box of a linear equation in an Abelian group
Colloquium Mathematicum, Tome 143 (2016) no. 1, pp. 17-22
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For every finite Abelian group $\varGamma $ and for all $g,a_1,\ldots ,a_k\in \varGamma ,$ if there exists a solution of the equation $\sum _{i=1}^k a_ix_i = g$ in non-negative integers $x_i\le b_i,$ where $b_i$ are positive integers, then the number of such solutions is estimated from below in the best possible way.
Keywords:
every finite abelian group vargamma ldots vargamma there exists solution equation sum non negative integers where positive integers number solutions estimated below best possible
Affiliations des auteurs :
Maciej Zakarczemny 1
@article{10_4064_cm6145_12_2015,
author = {Maciej Zakarczemny},
title = {Number of solutions in a box of a linear equation in an {Abelian} group},
journal = {Colloquium Mathematicum},
pages = {17--22},
publisher = {mathdoc},
volume = {143},
number = {1},
year = {2016},
doi = {10.4064/cm6145-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6145-12-2015/}
}
TY - JOUR AU - Maciej Zakarczemny TI - Number of solutions in a box of a linear equation in an Abelian group JO - Colloquium Mathematicum PY - 2016 SP - 17 EP - 22 VL - 143 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm6145-12-2015/ DO - 10.4064/cm6145-12-2015 LA - en ID - 10_4064_cm6145_12_2015 ER -
%0 Journal Article %A Maciej Zakarczemny %T Number of solutions in a box of a linear equation in an Abelian group %J Colloquium Mathematicum %D 2016 %P 17-22 %V 143 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm6145-12-2015/ %R 10.4064/cm6145-12-2015 %G en %F 10_4064_cm6145_12_2015
Maciej Zakarczemny. Number of solutions in a box of a linear equation in an Abelian group. Colloquium Mathematicum, Tome 143 (2016) no. 1, pp. 17-22. doi: 10.4064/cm6145-12-2015
Cité par Sources :