Number of solutions in a box of a linear equation in an Abelian group
Colloquium Mathematicum, Tome 143 (2016) no. 1, pp. 17-22.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For every finite Abelian group $\varGamma $ and for all $g,a_1,\ldots ,a_k\in \varGamma ,$ if there exists a solution of the equation $\sum _{i=1}^k a_ix_i = g$ in non-negative integers $x_i\le b_i,$ where $b_i$ are positive integers, then the number of such solutions is estimated from below in the best possible way.
DOI : 10.4064/cm6145-12-2015
Keywords: every finite abelian group vargamma ldots vargamma there exists solution equation sum non negative integers where positive integers number solutions estimated below best possible

Maciej Zakarczemny 1

1 Institute of Mathematics Cracow University of Technology Warszawska 24 31-155 Kraków, Poland
@article{10_4064_cm6145_12_2015,
     author = {Maciej Zakarczemny},
     title = {Number of solutions in a box of a linear equation in an {Abelian} group},
     journal = {Colloquium Mathematicum},
     pages = {17--22},
     publisher = {mathdoc},
     volume = {143},
     number = {1},
     year = {2016},
     doi = {10.4064/cm6145-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm6145-12-2015/}
}
TY  - JOUR
AU  - Maciej Zakarczemny
TI  - Number of solutions in a box of a linear equation in an Abelian group
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 17
EP  - 22
VL  - 143
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm6145-12-2015/
DO  - 10.4064/cm6145-12-2015
LA  - en
ID  - 10_4064_cm6145_12_2015
ER  - 
%0 Journal Article
%A Maciej Zakarczemny
%T Number of solutions in a box of a linear equation in an Abelian group
%J Colloquium Mathematicum
%D 2016
%P 17-22
%V 143
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm6145-12-2015/
%R 10.4064/cm6145-12-2015
%G en
%F 10_4064_cm6145_12_2015
Maciej Zakarczemny. Number of solutions in a box of a linear equation in an Abelian group. Colloquium Mathematicum, Tome 143 (2016) no. 1, pp. 17-22. doi : 10.4064/cm6145-12-2015. http://geodesic.mathdoc.fr/articles/10.4064/cm6145-12-2015/

Cité par Sources :