Suslin's lemma for rings containing an infinite field
Colloquium Mathematicum, Tome 146 (2017) no. 1, pp. 111-122.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A well-known lemma of Suslin says that for a commutative ring ${\bf A}$, if $^{\rm t}(v_1,\ldots ,v_n) \in {\bf A}[X]^{n\times 1}$ is unimodular where $v_1$ is monic of degree $d$ and $n\geq 3$, then there exist $\gamma _1,\ldots ,\gamma _{\ell } \in {\rm E}_{n-1}({\bf A}[X])$ such that, denoting by $w_i$ the first coordinate of $\gamma _i {^{\rm t}(}v_2,\ldots ,v_n)$, we have $$\langle {{\rm Res}_X(v_1, w_1), \ldots , {\rm Res}_X (v_1, w_{\ell })}\rangle = {\bf A}.$$ This lemma played a central role in Suslin’s resolution of Serre’s conjecture. In case ${\bf A}$ contains a set $E = \{y_0,\ldots ,y_{(n-2)d}\}$ such that $y_i -y_j \in {\bf A}^{\times }$ for $i \not =j$, we prove that the $\gamma _i$’s can simply correspond to the elementary operations $L_1 \rightarrow L_1 + \sum _{j=2}^{n-1} y_i^{j-2} L_j$, $0 \leq i \leq (n -2) d$. These efficient elementary operations enable us to give a new and simple algorithm (for the Quillen–Suslin theorem) for reducing unimodular rows with entries in ${\bf K}[X_1,\ldots ,X_k]$ to $^{\rm t}(1,0,\ldots ,0)$, using elementary operations in case ${\bf K}$ is an infinite field. This work generalizes a previous paper by Lombardi and the second author which corresponds to the particular case $n = 3$.
DOI : 10.4064/cm5969-2-2015
Keywords: well known lemma suslin says commutative ring ldots times unimodular where monic degree geq there exist gamma ldots gamma ell n denoting first coordinate gamma ldots have langle res ldots res ell rangle lemma played central role suslin resolution serre conjecture contains set ldots n y times prove gamma simply correspond elementary operations rightarrow sum n j leq leq these efficient elementary operations enable simple algorithm quillen suslin theorem reducing unimodular rows entries ldots ldots using elementary operations infinite field work generalizes previous paper lombardi second author which corresponds particular

Samiha Monceur 1 ; Ihsen Yengui 2

1 Department of Mathematics Faculty of Sciences University of Sfax 3000 Sfax, Tunisia
2 Department of Mathematics Faculty of Sciences of Sfax University of Sfax 3000 Sfax, Tunisia
@article{10_4064_cm5969_2_2015,
     author = {Samiha Monceur and Ihsen Yengui},
     title = {Suslin's lemma for rings containing an infinite field},
     journal = {Colloquium Mathematicum},
     pages = {111--122},
     publisher = {mathdoc},
     volume = {146},
     number = {1},
     year = {2017},
     doi = {10.4064/cm5969-2-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm5969-2-2015/}
}
TY  - JOUR
AU  - Samiha Monceur
AU  - Ihsen Yengui
TI  - Suslin's lemma for rings containing an infinite field
JO  - Colloquium Mathematicum
PY  - 2017
SP  - 111
EP  - 122
VL  - 146
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm5969-2-2015/
DO  - 10.4064/cm5969-2-2015
LA  - en
ID  - 10_4064_cm5969_2_2015
ER  - 
%0 Journal Article
%A Samiha Monceur
%A Ihsen Yengui
%T Suslin's lemma for rings containing an infinite field
%J Colloquium Mathematicum
%D 2017
%P 111-122
%V 146
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm5969-2-2015/
%R 10.4064/cm5969-2-2015
%G en
%F 10_4064_cm5969_2_2015
Samiha Monceur; Ihsen Yengui. Suslin's lemma for rings containing an infinite field. Colloquium Mathematicum, Tome 146 (2017) no. 1, pp. 111-122. doi : 10.4064/cm5969-2-2015. http://geodesic.mathdoc.fr/articles/10.4064/cm5969-2-2015/

Cité par Sources :