Axial permutations of $\omega ^2$
Colloquium Mathematicum, Tome 142 (2016) no. 2, pp. 267-273.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that every permutation of $\omega ^2$ is a composition of a finite number of axial permutations, where each axial permutation moves only a finite number of elements on each axis.
DOI : 10.4064/cm142-2-7
Mots-clés : prove every permutation omega composition finite number axial permutations where each axial permutation moves only finite number elements each axis

Paweł Klinga 1

1 Institute of Mathematics University of Gdańsk Wita Stwosza 57 80-952 Gdańsk, Poland
@article{10_4064_cm142_2_7,
     author = {Pawe{\l} Klinga},
     title = {Axial permutations of $\omega ^2$},
     journal = {Colloquium Mathematicum},
     pages = {267--273},
     publisher = {mathdoc},
     volume = {142},
     number = {2},
     year = {2016},
     doi = {10.4064/cm142-2-7},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-7/}
}
TY  - JOUR
AU  - Paweł Klinga
TI  - Axial permutations of $\omega ^2$
JO  - Colloquium Mathematicum
PY  - 2016
SP  - 267
EP  - 273
VL  - 142
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-7/
DO  - 10.4064/cm142-2-7
LA  - fr
ID  - 10_4064_cm142_2_7
ER  - 
%0 Journal Article
%A Paweł Klinga
%T Axial permutations of $\omega ^2$
%J Colloquium Mathematicum
%D 2016
%P 267-273
%V 142
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-7/
%R 10.4064/cm142-2-7
%G fr
%F 10_4064_cm142_2_7
Paweł Klinga. Axial permutations of $\omega ^2$. Colloquium Mathematicum, Tome 142 (2016) no. 2, pp. 267-273. doi : 10.4064/cm142-2-7. http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-7/

Cité par Sources :