Axial permutations of $\omega ^2$
Colloquium Mathematicum, Tome 142 (2016) no. 2, pp. 267-273
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that every permutation of $\omega ^2$ is a composition of a finite number of axial permutations, where each axial permutation moves only a finite number of elements on each axis.
Mots-clés :
prove every permutation omega composition finite number axial permutations where each axial permutation moves only finite number elements each axis
Affiliations des auteurs :
Paweł Klinga 1
@article{10_4064_cm142_2_7,
author = {Pawe{\l} Klinga},
title = {Axial permutations of $\omega ^2$},
journal = {Colloquium Mathematicum},
pages = {267--273},
publisher = {mathdoc},
volume = {142},
number = {2},
year = {2016},
doi = {10.4064/cm142-2-7},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm142-2-7/}
}
Paweł Klinga. Axial permutations of $\omega ^2$. Colloquium Mathematicum, Tome 142 (2016) no. 2, pp. 267-273. doi: 10.4064/cm142-2-7
Cité par Sources :