Incidence coalgebras of interval finite posets of tame comodule type
Colloquium Mathematicum, Tome 141 (2015) no. 2, pp. 261-295.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The incidence coalgebras $ K^{\Box} I$ of interval finite posets $I$ and their comodules are studied by means of the reduced Euler integral quadratic form $q^\bullet :\mathbb Z^{(I)}\to \mathbb Z$, where $K$ is an algebraically closed field. It is shown that for any such coalgebra the tameness of the category $K^{\Box} I\mbox{-}{\rm comod}$ of finite-dimensional left $ K^{\Box} I$-modules is equivalent to the tameness of the category $K^{\Box} I{\mbox{-}{\rm Comod}_{{\rm fc}}}$ of finitely copresented left $ K^{\Box} I$-modules. Hence, the tame-wild dichotomy for the coalgebras $K^{\Box} I$ is deduced. Moreover, we prove that for an interval finite $\widetilde {\mathbb A}^*_m$-free poset $I$ the incidence coalgebra $K^{\Box} I$ is of tame comodule type if and only if the quadratic form $q^\bullet $ is weakly non-negative. Finally, we give a complete list of all infinite connected interval finite $\widetilde {\mathbb A}^*_m$-free posets $I$ such that $K^{\Box} I$ is of tame comodule type. In this case we prove that, for any pair of finite-dimensional left $K^{\Box} I$-comodules $M$ and $N$, $ \overline b_{K^{\Box} I} (\operatorname{\bf dim} M,\operatorname{\bf dim} N) = \sum _{j=0}^{\infty}(-1)^j\dim_K \operatorname{Ext}_{K^{\Box} I}^j(M,N) $, where $ \overline b_{K^{\Box} I}:\mathbb Z^{(I)}\times \mathbb Z^{(I)}\to \mathbb Z $ is the Euler $\mathbb Z$-bilinear form of $I$ and $\operatorname{\bf dim} M$, $\operatorname{\bf dim} N$ are the dimension vectors of $M$ and $N$.
DOI : 10.4064/cm141-2-10
Keywords: incidence coalgebras box interval finite posets their comodules studied means reduced euler integral quadratic form bullet mathbb mathbb where algebraically closed field shown coalgebra tameness category box mbox comod finite dimensional box i modules equivalent tameness category box mbox comod finitely copresented box i modules hence tame wild dichotomy coalgebras box deduced moreover prove interval finite widetilde mathbb * m free poset incidence coalgebra box tame comodule type only quadratic form bullet weakly non negative finally complete list infinite connected interval finite widetilde mathbb * m free posets box tame comodule type prove pair finite dimensional box i comodules overline box operatorname dim operatorname dim sum infty dim operatorname ext box where overline box mathbb times mathbb mathbb euler mathbb z bilinear form operatorname dim operatorname dim dimension vectors

Zbigniew Leszczyński 1 ; Daniel Simson 1

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland
@article{10_4064_cm141_2_10,
     author = {Zbigniew Leszczy\'nski and Daniel Simson},
     title = {Incidence coalgebras of interval finite posets of tame comodule type},
     journal = {Colloquium Mathematicum},
     pages = {261--295},
     publisher = {mathdoc},
     volume = {141},
     number = {2},
     year = {2015},
     doi = {10.4064/cm141-2-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm141-2-10/}
}
TY  - JOUR
AU  - Zbigniew Leszczyński
AU  - Daniel Simson
TI  - Incidence coalgebras of interval finite posets of tame comodule type
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 261
EP  - 295
VL  - 141
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm141-2-10/
DO  - 10.4064/cm141-2-10
LA  - en
ID  - 10_4064_cm141_2_10
ER  - 
%0 Journal Article
%A Zbigniew Leszczyński
%A Daniel Simson
%T Incidence coalgebras of interval finite posets of tame comodule type
%J Colloquium Mathematicum
%D 2015
%P 261-295
%V 141
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm141-2-10/
%R 10.4064/cm141-2-10
%G en
%F 10_4064_cm141_2_10
Zbigniew Leszczyński; Daniel Simson. Incidence coalgebras of interval finite posets of tame comodule type. Colloquium Mathematicum, Tome 141 (2015) no. 2, pp. 261-295. doi : 10.4064/cm141-2-10. http://geodesic.mathdoc.fr/articles/10.4064/cm141-2-10/

Cité par Sources :