Some identities involving differences of products of generalized Fibonacci numbers
Colloquium Mathematicum, Tome 141 (2015) no. 1, pp. 45-49
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Melham discovered the Fibonacci identity $$ F_{n+1} F_{n+2} F_{n+6} - F_{n+3}^3 = (-1)^n F_n . $$ He then considered the generalized sequence $W_n$ where $W_0 = a$, $W_1 = b$, and $W_n = p W_{n-1} + q W_{n-2}$ and $a$, $b$, $p$ and $q$ are integers and $q \not =0$. Letting $e = pab - qa^2 - b^2$, he proved the following identity: $$ W_{n+1} W_{n+2} W_{n+6} - W_{n+3}^3 = e q^{n+1} ( p^3 W_{n+2} - q^2 W_{n+1} ) . $$ There are similar differences of products of Fibonacci numbers, like this one discovered by Fairgrieve and Gould: $$ F_n F_{n+4} F_{n+5} - F_{n+3}^3 = (-1)^{n+1} F_{n+6}. $$ We prove similar identities. For example, a generalization of Fairgrieve and Gould's identity is $$ W_n W_{n+4} W_{n+5} - W_{n+3}^3 = eq^n ( p^3 W_{n+4} - q W_{n+5} ). $$
Keywords:
melham discovered fibonacci identity considered generalized sequence where n n integers letting pab proved following identity there similar differences products fibonacci numbers discovered fairgrieve gould prove similar identities example generalization fairgrieve goulds identity
Affiliations des auteurs :
Curtis Cooper 1
@article{10_4064_cm141_1_4,
author = {Curtis Cooper},
title = {Some identities involving differences of products of generalized {Fibonacci} numbers},
journal = {Colloquium Mathematicum},
pages = {45--49},
publisher = {mathdoc},
volume = {141},
number = {1},
year = {2015},
doi = {10.4064/cm141-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm141-1-4/}
}
TY - JOUR AU - Curtis Cooper TI - Some identities involving differences of products of generalized Fibonacci numbers JO - Colloquium Mathematicum PY - 2015 SP - 45 EP - 49 VL - 141 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm141-1-4/ DO - 10.4064/cm141-1-4 LA - en ID - 10_4064_cm141_1_4 ER -
Curtis Cooper. Some identities involving differences of products of generalized Fibonacci numbers. Colloquium Mathematicum, Tome 141 (2015) no. 1, pp. 45-49. doi: 10.4064/cm141-1-4
Cité par Sources :