Some identities involving differences of products of generalized Fibonacci numbers
Colloquium Mathematicum, Tome 141 (2015) no. 1, pp. 45-49.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Melham discovered the Fibonacci identity $$ F_{n+1} F_{n+2} F_{n+6} - F_{n+3}^3 = (-1)^n F_n . $$ He then considered the generalized sequence $W_n$ where $W_0 = a$, $W_1 = b$, and $W_n = p W_{n-1} + q W_{n-2}$ and $a$, $b$, $p$ and $q$ are integers and $q \not =0$. Letting $e = pab - qa^2 - b^2$, he proved the following identity: $$ W_{n+1} W_{n+2} W_{n+6} - W_{n+3}^3 = e q^{n+1} ( p^3 W_{n+2} - q^2 W_{n+1} ) . $$ There are similar differences of products of Fibonacci numbers, like this one discovered by Fairgrieve and Gould: $$ F_n F_{n+4} F_{n+5} - F_{n+3}^3 = (-1)^{n+1} F_{n+6}. $$ We prove similar identities. For example, a generalization of Fairgrieve and Gould's identity is $$ W_n W_{n+4} W_{n+5} - W_{n+3}^3 = eq^n ( p^3 W_{n+4} - q W_{n+5} ). $$
DOI : 10.4064/cm141-1-4
Keywords: melham discovered fibonacci identity considered generalized sequence where n n integers letting pab proved following identity there similar differences products fibonacci numbers discovered fairgrieve gould prove similar identities example generalization fairgrieve goulds identity

Curtis Cooper 1

1 Department of Mathematics and Computer Science University of Central Missouri Warrensburg, MO 64093, U.S.A.
@article{10_4064_cm141_1_4,
     author = {Curtis Cooper},
     title = {Some identities involving differences of products of generalized {Fibonacci} numbers},
     journal = {Colloquium Mathematicum},
     pages = {45--49},
     publisher = {mathdoc},
     volume = {141},
     number = {1},
     year = {2015},
     doi = {10.4064/cm141-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm141-1-4/}
}
TY  - JOUR
AU  - Curtis Cooper
TI  - Some identities involving differences of products of generalized Fibonacci numbers
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 45
EP  - 49
VL  - 141
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm141-1-4/
DO  - 10.4064/cm141-1-4
LA  - en
ID  - 10_4064_cm141_1_4
ER  - 
%0 Journal Article
%A Curtis Cooper
%T Some identities involving differences of products of generalized Fibonacci numbers
%J Colloquium Mathematicum
%D 2015
%P 45-49
%V 141
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm141-1-4/
%R 10.4064/cm141-1-4
%G en
%F 10_4064_cm141_1_4
Curtis Cooper. Some identities involving differences of products of generalized Fibonacci numbers. Colloquium Mathematicum, Tome 141 (2015) no. 1, pp. 45-49. doi : 10.4064/cm141-1-4. http://geodesic.mathdoc.fr/articles/10.4064/cm141-1-4/

Cité par Sources :