Reduced spherical polygons
Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 205-216.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For every hemisphere $K$ supporting a spherically convex body $C$ of the $d$-dimensional sphere $S^d$ we consider the width of $C$ determined by $K$. By the thickness $\varDelta (C)$ of $C$ we mean the minimum of the widths of $C$ over all supporting hemispheres $K$ of $C$. A spherically convex body $R \subset S^d$ is said to be reduced provided $\varDelta (Z) \varDelta (R)$ for every spherically convex body $Z \subset R$ different from $R$. We characterize reduced spherical polygons on $S^2$. We show that every reduced spherical polygon is of thickness at most $\pi /2$. We also estimate the diameter of reduced spherical polygons in terms of their thickness. Moreover, a few other properties of reduced spherical polygons are given.
DOI : 10.4064/cm138-2-5
Keywords: every hemisphere supporting spherically convex body d dimensional sphere consider width determined thickness vardelta mean minimum widths supporting hemispheres spherically convex body subset said reduced provided vardelta vardelta every spherically convex body subset different characterize reduced spherical polygons every reduced spherical polygon thickness estimate diameter reduced spherical polygons terms their thickness moreover few other properties reduced spherical polygons given

Marek Lassak 1

1 Institute of Mathematics and Physics University of Science and Technology 85-789 Bydgoszcz, Poland
@article{10_4064_cm138_2_5,
     author = {Marek Lassak},
     title = {Reduced spherical polygons},
     journal = {Colloquium Mathematicum},
     pages = {205--216},
     publisher = {mathdoc},
     volume = {138},
     number = {2},
     year = {2015},
     doi = {10.4064/cm138-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-5/}
}
TY  - JOUR
AU  - Marek Lassak
TI  - Reduced spherical polygons
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 205
EP  - 216
VL  - 138
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-5/
DO  - 10.4064/cm138-2-5
LA  - en
ID  - 10_4064_cm138_2_5
ER  - 
%0 Journal Article
%A Marek Lassak
%T Reduced spherical polygons
%J Colloquium Mathematicum
%D 2015
%P 205-216
%V 138
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-5/
%R 10.4064/cm138-2-5
%G en
%F 10_4064_cm138_2_5
Marek Lassak. Reduced spherical polygons. Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 205-216. doi : 10.4064/cm138-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-5/

Cité par Sources :