Fuglede–Putnam theorem for class $A$ operators
Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 183-191.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $A\in B (H)$ and $B\in B(K)$. We say that $A$ and $B$ satisfy the Fuglede–Putnam theorem if $AX = XB$ for some $X\in B(K,H)$ implies $A^{*}X = XB^{*}$. Patel et al. (2006) showed that the Fuglede–Putnam theorem holds for class $A(s,t)$ operators with $s+t 1$ and they mentioned that the case $s=t=1$ is still an open problem. In the present article we give a partial positive answer to this problem. We show that if $A\in B(H)$ is a class $A$ operator with reducing kernel and $B^{*}\in B(K)$ is a class $\mathcal {Y}$ operator, and $AX=XB$ for some $X\in B(K,H)$, then $A^{*}X=XB^{*}$.
DOI : 10.4064/cm138-2-3
Keywords: say satisfy fuglede putnam theorem implies * * patel showed fuglede putnam theorem holds class operators mentioned still problem present article partial positive answer problem class operator reducing kernel * class mathcal operator * *

Salah Mecheri 1

1 Department of Mathematics College of Sciences Taibah University Medina, Saudi Arabia
@article{10_4064_cm138_2_3,
     author = {Salah Mecheri},
     title = {Fuglede{\textendash}Putnam theorem for class $A$ operators},
     journal = {Colloquium Mathematicum},
     pages = {183--191},
     publisher = {mathdoc},
     volume = {138},
     number = {2},
     year = {2015},
     doi = {10.4064/cm138-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-3/}
}
TY  - JOUR
AU  - Salah Mecheri
TI  - Fuglede–Putnam theorem for class $A$ operators
JO  - Colloquium Mathematicum
PY  - 2015
SP  - 183
EP  - 191
VL  - 138
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-3/
DO  - 10.4064/cm138-2-3
LA  - en
ID  - 10_4064_cm138_2_3
ER  - 
%0 Journal Article
%A Salah Mecheri
%T Fuglede–Putnam theorem for class $A$ operators
%J Colloquium Mathematicum
%D 2015
%P 183-191
%V 138
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-3/
%R 10.4064/cm138-2-3
%G en
%F 10_4064_cm138_2_3
Salah Mecheri. Fuglede–Putnam theorem for class $A$ operators. Colloquium Mathematicum, Tome 138 (2015) no. 2, pp. 183-191. doi : 10.4064/cm138-2-3. http://geodesic.mathdoc.fr/articles/10.4064/cm138-2-3/

Cité par Sources :