FKN Theorem on the biased cube
Colloquium Mathematicum, Tome 137 (2014) no. 2, pp. 253-261.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider Boolean functions defined on the discrete cube $\{-\gamma ,\gamma ^{-1}\}^n$ equipped with a product probability measure $\mu ^{\otimes n}$, where $\mu =\beta \delta _{-\gamma }+\alpha \delta _{ \gamma ^{-1} }$ and $\gamma =\sqrt {\alpha / \beta }$. This normalization ensures that the coordinate functions $(x_i)_{i=1,\ldots ,n}$ are orthonormal in $L_2(\{-\gamma ,\gamma ^{-1}\}^n,\mu ^{\otimes n})$. We prove that if the spectrum of a Boolean function is concentrated on the first two Fourier levels, then the function is close to a certain function of one variable. Our theorem strengthens the non-symmetric FKN Theorem due to Jendrej, Oleszkiewicz and Wojtaszczyk. Moreover, in the symmetric case $\alpha =\beta =1/2$ we prove that if a $[-1,1]$-valued function defined on the discrete cube is close to a certain affine function, then it is also close to a $[-1,1]$-valued affine function.
DOI : 10.4064/cm137-2-9
Keywords: consider boolean functions defined discrete cube gamma gamma equipped product probability measure otimes where beta delta gamma alpha delta gamma gamma sqrt alpha beta normalization ensures coordinate functions ldots orthonormal gamma gamma otimes prove spectrum boolean function concentrated first fourier levels function close certain function variable theorem strengthens non symmetric fkn theorem due jendrej oleszkiewicz wojtaszczyk moreover symmetric alpha beta prove valued function defined discrete cube close certain affine function close valued affine function

Piotr Nayar 1

1 Institute of Mathematics University of Warsaw Banacha 2 02-097 Warszawa, Poland and Institute for Mathematics and its Applications College of Science and Engineering University of Minnesota 207 Church Street SE 306 Lind Hall Minneapolis, MN 55455, U.S.A.
@article{10_4064_cm137_2_9,
     author = {Piotr Nayar},
     title = {FKN {Theorem} on the biased cube},
     journal = {Colloquium Mathematicum},
     pages = {253--261},
     publisher = {mathdoc},
     volume = {137},
     number = {2},
     year = {2014},
     doi = {10.4064/cm137-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm137-2-9/}
}
TY  - JOUR
AU  - Piotr Nayar
TI  - FKN Theorem on the biased cube
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 253
EP  - 261
VL  - 137
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm137-2-9/
DO  - 10.4064/cm137-2-9
LA  - en
ID  - 10_4064_cm137_2_9
ER  - 
%0 Journal Article
%A Piotr Nayar
%T FKN Theorem on the biased cube
%J Colloquium Mathematicum
%D 2014
%P 253-261
%V 137
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm137-2-9/
%R 10.4064/cm137-2-9
%G en
%F 10_4064_cm137_2_9
Piotr Nayar. FKN Theorem on the biased cube. Colloquium Mathematicum, Tome 137 (2014) no. 2, pp. 253-261. doi : 10.4064/cm137-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm137-2-9/

Cité par Sources :