An exponential Diophantine equation related to the sum of powers of two consecutive $k$-generalized Fibonacci numbers
Colloquium Mathematicum, Tome 137 (2014) no. 2, pp. 171-188.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A generalization of the well-known Fibonacci sequence $\{F_n\}_{n\ge 0}$ given by $F_0 = 0$, $F_1 = 1$ and $F_{n+2} = F_{n+1}+F_{n}$ for all $n\ge 0$ is the $k$-generalized Fibonacci sequence $\{F_n^{(k)}\}_{n\geq -(k-2)}$ whose first $k$ terms are $0, \ldots , 0, 1$ and each term afterwards is the sum of the preceding $k$ terms. For the Fibonacci sequence the formula $F_n^2+F_{n+1}^2 = F_{2n+1}$ holds for all $n \geq 0$. In this paper, we show that there is no integer $x\geq 2$ such that the sum of the $x$th powers of two consecutive $k$-generalized Fibonacci numbers is again a $k$-generalized Fibonacci number. This generalizes a recent result of Chaves and Marques.
DOI : 10.4064/cm137-2-3
Keywords: generalization well known fibonacci sequence given k generalized fibonacci sequence geq k whose first terms ldots each term afterwards sum preceding terms fibonacci sequence formula holds geq paper there integer geq sum xth powers consecutive k generalized fibonacci numbers again k generalized fibonacci number generalizes recent result chaves marques

Carlos Alexis Gómez Ruiz 1 ; Florian Luca 2

1 Departamento de Matemáticas Universidad del Valle Cali, Colombia
2 School of Mathematics University of the Witwatersrand P.O. Box Wits 2050 Johannesburg, South Africa and Mathematical Institute UNAM Juriquilla Santiago de Querétaro 76230 Querétaro de Arteaga México
@article{10_4064_cm137_2_3,
     author = {Carlos Alexis G\'omez Ruiz and Florian Luca},
     title = {An exponential {Diophantine} equation related
 to the sum of powers of two consecutive $k$-generalized {Fibonacci} numbers},
     journal = {Colloquium Mathematicum},
     pages = {171--188},
     publisher = {mathdoc},
     volume = {137},
     number = {2},
     year = {2014},
     doi = {10.4064/cm137-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm137-2-3/}
}
TY  - JOUR
AU  - Carlos Alexis Gómez Ruiz
AU  - Florian Luca
TI  - An exponential Diophantine equation related
 to the sum of powers of two consecutive $k$-generalized Fibonacci numbers
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 171
EP  - 188
VL  - 137
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm137-2-3/
DO  - 10.4064/cm137-2-3
LA  - en
ID  - 10_4064_cm137_2_3
ER  - 
%0 Journal Article
%A Carlos Alexis Gómez Ruiz
%A Florian Luca
%T An exponential Diophantine equation related
 to the sum of powers of two consecutive $k$-generalized Fibonacci numbers
%J Colloquium Mathematicum
%D 2014
%P 171-188
%V 137
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm137-2-3/
%R 10.4064/cm137-2-3
%G en
%F 10_4064_cm137_2_3
Carlos Alexis Gómez Ruiz; Florian Luca. An exponential Diophantine equation related
 to the sum of powers of two consecutive $k$-generalized Fibonacci numbers. Colloquium Mathematicum, Tome 137 (2014) no. 2, pp. 171-188. doi : 10.4064/cm137-2-3. http://geodesic.mathdoc.fr/articles/10.4064/cm137-2-3/

Cité par Sources :