An exponential Diophantine equation related
to the sum of powers of two consecutive $k$-generalized Fibonacci numbers
Colloquium Mathematicum, Tome 137 (2014) no. 2, pp. 171-188
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A generalization of the well-known Fibonacci sequence $\{F_n\}_{n\ge 0}$ given by $F_0 = 0$, $F_1 = 1$ and $F_{n+2} = F_{n+1}+F_{n}$ for all $n\ge 0$ is the $k$-generalized Fibonacci sequence $\{F_n^{(k)}\}_{n\geq -(k-2)}$ whose first $k$ terms are $0, \ldots , 0, 1$ and each term afterwards is the sum of the preceding $k$ terms. For the Fibonacci sequence the formula $F_n^2+F_{n+1}^2 = F_{2n+1}$ holds for all $n \geq 0$. In this paper, we show that there is no integer $x\geq 2$ such that the sum of the $x$th powers of two consecutive $k$-generalized Fibonacci numbers is again a $k$-generalized Fibonacci number. This generalizes a recent result of Chaves and Marques.
Keywords:
generalization well known fibonacci sequence given k generalized fibonacci sequence geq k whose first terms ldots each term afterwards sum preceding terms fibonacci sequence formula holds geq paper there integer geq sum xth powers consecutive k generalized fibonacci numbers again k generalized fibonacci number generalizes recent result chaves marques
Affiliations des auteurs :
Carlos Alexis Gómez Ruiz 1 ; Florian Luca 2
@article{10_4064_cm137_2_3,
author = {Carlos Alexis G\'omez Ruiz and Florian Luca},
title = {An exponential {Diophantine} equation related
to the sum of powers of two consecutive $k$-generalized {Fibonacci} numbers},
journal = {Colloquium Mathematicum},
pages = {171--188},
publisher = {mathdoc},
volume = {137},
number = {2},
year = {2014},
doi = {10.4064/cm137-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm137-2-3/}
}
TY - JOUR AU - Carlos Alexis Gómez Ruiz AU - Florian Luca TI - An exponential Diophantine equation related to the sum of powers of two consecutive $k$-generalized Fibonacci numbers JO - Colloquium Mathematicum PY - 2014 SP - 171 EP - 188 VL - 137 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm137-2-3/ DO - 10.4064/cm137-2-3 LA - en ID - 10_4064_cm137_2_3 ER -
%0 Journal Article %A Carlos Alexis Gómez Ruiz %A Florian Luca %T An exponential Diophantine equation related to the sum of powers of two consecutive $k$-generalized Fibonacci numbers %J Colloquium Mathematicum %D 2014 %P 171-188 %V 137 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm137-2-3/ %R 10.4064/cm137-2-3 %G en %F 10_4064_cm137_2_3
Carlos Alexis Gómez Ruiz; Florian Luca. An exponential Diophantine equation related to the sum of powers of two consecutive $k$-generalized Fibonacci numbers. Colloquium Mathematicum, Tome 137 (2014) no. 2, pp. 171-188. doi: 10.4064/cm137-2-3
Cité par Sources :