Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A. Ülger 1
@article{10_4064_cm136_2_9, author = {A. \"Ulger}, title = {Relatively weak$^{\ast }$ closed ideals of $A(G)$, sets of synthesis and sets of uniqueness}, journal = {Colloquium Mathematicum}, pages = {271--296}, publisher = {mathdoc}, volume = {136}, number = {2}, year = {2014}, doi = {10.4064/cm136-2-9}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-9/} }
TY - JOUR AU - A. Ülger TI - Relatively weak$^{\ast }$ closed ideals of $A(G)$, sets of synthesis and sets of uniqueness JO - Colloquium Mathematicum PY - 2014 SP - 271 EP - 296 VL - 136 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-9/ DO - 10.4064/cm136-2-9 LA - en ID - 10_4064_cm136_2_9 ER -
%0 Journal Article %A A. Ülger %T Relatively weak$^{\ast }$ closed ideals of $A(G)$, sets of synthesis and sets of uniqueness %J Colloquium Mathematicum %D 2014 %P 271-296 %V 136 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-9/ %R 10.4064/cm136-2-9 %G en %F 10_4064_cm136_2_9
A. Ülger. Relatively weak$^{\ast }$ closed ideals of $A(G)$, sets of synthesis and sets of uniqueness. Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 271-296. doi : 10.4064/cm136-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-9/
Cité par Sources :