A note on arc-disjoint cycles in tournaments
Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 259-262
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that every vertex $v$ of a tournament $T$ belongs to at least $$\max\{\min\{\delta ^+(T), 2\delta ^+(T) - d^+_T(v) +1\},
\min\{\delta ^-(T), 2\delta ^-(T) - d^-_T(v) +1\}\}$$ arc-disjoint cycles, where $\delta ^+(T)$ (or $\delta ^-(T)$) is the minimum out-degree (resp. minimum in-degree) of $T$, and $d^+_T(v)$ (or $d^-_T(v)$) is the out-degree (resp. in-degree) of $v$.
Keywords:
prove every vertex nbsp tournament belongs least max min delta delta min delta delta arc disjoint cycles where delta delta minimum out degree resp minimum in degree out degree resp in degree
Affiliations des auteurs :
Jan Florek 1
@article{10_4064_cm136_2_7,
author = {Jan Florek},
title = {A note on arc-disjoint cycles in tournaments},
journal = {Colloquium Mathematicum},
pages = {259--262},
publisher = {mathdoc},
volume = {136},
number = {2},
year = {2014},
doi = {10.4064/cm136-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-7/}
}
Jan Florek. A note on arc-disjoint cycles in tournaments. Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 259-262. doi: 10.4064/cm136-2-7
Cité par Sources :