On $A^{2} \pm nB^{4} + C^{4} = D^{8}$
Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 255-257
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that for each $n\in \mathbb {N_{+}}$ the Diophantine equation $ A^2 \pm nB^4 + C^4 = D^8$ has infinitely many primitive integer solutions, i.e. solutions satisfying ${\rm gcd}(A, B, C, D) =1$.
Keywords:
prove each mathbb diophantine equation has infinitely many primitive integer solutions solutions satisfying gcd
Affiliations des auteurs :
Susil Kumar Jena 1
@article{10_4064_cm136_2_6,
author = {Susil Kumar Jena},
title = {On $A^{2} \pm nB^{4} + C^{4} = D^{8}$},
journal = {Colloquium Mathematicum},
pages = {255--257},
publisher = {mathdoc},
volume = {136},
number = {2},
year = {2014},
doi = {10.4064/cm136-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-6/}
}
Susil Kumar Jena. On $A^{2} \pm nB^{4} + C^{4} = D^{8}$. Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 255-257. doi: 10.4064/cm136-2-6
Cité par Sources :