On $A^{2} \pm nB^{4} + C^{4} = D^{8}$
Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 255-257.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that for each $n\in \mathbb {N_{+}}$ the Diophantine equation $ A^2 \pm nB^4 + C^4 = D^8$ has infinitely many primitive integer solutions, i.e. solutions satisfying ${\rm gcd}(A, B, C, D) =1$.
DOI : 10.4064/cm136-2-6
Keywords: prove each mathbb diophantine equation has infinitely many primitive integer solutions solutions satisfying gcd

Susil Kumar Jena 1

1 Department of Electronics & Telecommunication Engineering KIIT University, Bhubaneswar 751024 Odisha, India
@article{10_4064_cm136_2_6,
     author = {Susil Kumar Jena},
     title = {On $A^{2} \pm nB^{4} + C^{4} = D^{8}$},
     journal = {Colloquium Mathematicum},
     pages = {255--257},
     publisher = {mathdoc},
     volume = {136},
     number = {2},
     year = {2014},
     doi = {10.4064/cm136-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-6/}
}
TY  - JOUR
AU  - Susil Kumar Jena
TI  - On $A^{2} \pm nB^{4} + C^{4} = D^{8}$
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 255
EP  - 257
VL  - 136
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-6/
DO  - 10.4064/cm136-2-6
LA  - en
ID  - 10_4064_cm136_2_6
ER  - 
%0 Journal Article
%A Susil Kumar Jena
%T On $A^{2} \pm nB^{4} + C^{4} = D^{8}$
%J Colloquium Mathematicum
%D 2014
%P 255-257
%V 136
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-6/
%R 10.4064/cm136-2-6
%G en
%F 10_4064_cm136_2_6
Susil Kumar Jena. On $A^{2} \pm nB^{4} + C^{4} = D^{8}$. Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 255-257. doi : 10.4064/cm136-2-6. http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-6/

Cité par Sources :