Fully inert submodules of torsion-free modules over the ring of $p$-adic integers
Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 169-178
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Fully inert submodules of torsion-free $J_p$-modules are investigated. It is proved that if the module considered is either free or complete, these submodules are exactly those which are commensurable with fully invariant submodules; examples are given of torsion-free $J_p$-modules for which this property fails.
Keywords:
fully inert submodules torsion free p modules investigated proved module considered either complete these submodules exactly those which commensurable fully invariant submodules examples given torsion free p modules which property fails
Affiliations des auteurs :
B. Goldsmith 1 ; L. Salce 2 ; P. Zanardo 2
@article{10_4064_cm136_2_2,
author = {B. Goldsmith and L. Salce and P. Zanardo},
title = {Fully inert submodules of torsion-free modules over the ring of $p$-adic integers},
journal = {Colloquium Mathematicum},
pages = {169--178},
publisher = {mathdoc},
volume = {136},
number = {2},
year = {2014},
doi = {10.4064/cm136-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-2/}
}
TY - JOUR AU - B. Goldsmith AU - L. Salce AU - P. Zanardo TI - Fully inert submodules of torsion-free modules over the ring of $p$-adic integers JO - Colloquium Mathematicum PY - 2014 SP - 169 EP - 178 VL - 136 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-2/ DO - 10.4064/cm136-2-2 LA - en ID - 10_4064_cm136_2_2 ER -
%0 Journal Article %A B. Goldsmith %A L. Salce %A P. Zanardo %T Fully inert submodules of torsion-free modules over the ring of $p$-adic integers %J Colloquium Mathematicum %D 2014 %P 169-178 %V 136 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-2/ %R 10.4064/cm136-2-2 %G en %F 10_4064_cm136_2_2
B. Goldsmith; L. Salce; P. Zanardo. Fully inert submodules of torsion-free modules over the ring of $p$-adic integers. Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 169-178. doi: 10.4064/cm136-2-2
Cité par Sources :