Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
B. Goldsmith 1 ; L. Salce 2 ; P. Zanardo 2
@article{10_4064_cm136_2_2, author = {B. Goldsmith and L. Salce and P. Zanardo}, title = {Fully inert submodules of torsion-free modules over the ring of $p$-adic integers}, journal = {Colloquium Mathematicum}, pages = {169--178}, publisher = {mathdoc}, volume = {136}, number = {2}, year = {2014}, doi = {10.4064/cm136-2-2}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-2/} }
TY - JOUR AU - B. Goldsmith AU - L. Salce AU - P. Zanardo TI - Fully inert submodules of torsion-free modules over the ring of $p$-adic integers JO - Colloquium Mathematicum PY - 2014 SP - 169 EP - 178 VL - 136 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-2/ DO - 10.4064/cm136-2-2 LA - en ID - 10_4064_cm136_2_2 ER -
%0 Journal Article %A B. Goldsmith %A L. Salce %A P. Zanardo %T Fully inert submodules of torsion-free modules over the ring of $p$-adic integers %J Colloquium Mathematicum %D 2014 %P 169-178 %V 136 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-2/ %R 10.4064/cm136-2-2 %G en %F 10_4064_cm136_2_2
B. Goldsmith; L. Salce; P. Zanardo. Fully inert submodules of torsion-free modules over the ring of $p$-adic integers. Colloquium Mathematicum, Tome 136 (2014) no. 2, pp. 169-178. doi : 10.4064/cm136-2-2. http://geodesic.mathdoc.fr/articles/10.4064/cm136-2-2/
Cité par Sources :