A note on conformal vector fields on a Riemannian manifold
Colloquium Mathematicum, Tome 136 (2014) no. 1, pp. 65-73.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider an $n$-dimensional compact Riemannian manifold $(M,g)$ and show that the presence of a non-Killing conformal vector field $\xi $ on $M$ that is also an eigenvector of the Laplacian operator acting on smooth vector fields with eigenvalue $\lambda >0 $, together with an upper bound on the energy of the vector field $\xi $, implies that $M$ is isometric to the $n$-sphere $S^{n}(\lambda )$. We also introduce the notion of $\varphi $-analytic conformal vector fields, study their properties, and obtain a characterization of $n$-spheres using these vector fields.
DOI : 10.4064/cm136-1-7
Keywords: consider n dimensional compact riemannian manifold presence non killing conformal vector field eigenvector laplacian operator acting smooth vector fields eigenvalue lambda together upper bound energy vector field implies isometric n sphere lambda introduce notion varphi analytic conformal vector fields study their properties obtain characterization n spheres using these vector fields

Sharief Deshmukh 1 ; Falleh Al-Solamy 2

1 Department of Mathematics College of Science King Saud University P.O. Box 2455 Riyadh 11451, Saudi Arabia
2 Department of Mathematics Faculty of Science King Abdulaziz University P.O. Box 80015 Jeddah 21589, Saudi Arabia
@article{10_4064_cm136_1_7,
     author = {Sharief Deshmukh and Falleh Al-Solamy},
     title = {A note on conformal vector fields
 on a {Riemannian} manifold},
     journal = {Colloquium Mathematicum},
     pages = {65--73},
     publisher = {mathdoc},
     volume = {136},
     number = {1},
     year = {2014},
     doi = {10.4064/cm136-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm136-1-7/}
}
TY  - JOUR
AU  - Sharief Deshmukh
AU  - Falleh Al-Solamy
TI  - A note on conformal vector fields
 on a Riemannian manifold
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 65
EP  - 73
VL  - 136
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm136-1-7/
DO  - 10.4064/cm136-1-7
LA  - en
ID  - 10_4064_cm136_1_7
ER  - 
%0 Journal Article
%A Sharief Deshmukh
%A Falleh Al-Solamy
%T A note on conformal vector fields
 on a Riemannian manifold
%J Colloquium Mathematicum
%D 2014
%P 65-73
%V 136
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm136-1-7/
%R 10.4064/cm136-1-7
%G en
%F 10_4064_cm136_1_7
Sharief Deshmukh; Falleh Al-Solamy. A note on conformal vector fields
 on a Riemannian manifold. Colloquium Mathematicum, Tome 136 (2014) no. 1, pp. 65-73. doi : 10.4064/cm136-1-7. http://geodesic.mathdoc.fr/articles/10.4064/cm136-1-7/

Cité par Sources :