A note on conformal vector fields
on a Riemannian manifold
Colloquium Mathematicum, Tome 136 (2014) no. 1, pp. 65-73
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider an $n$-dimensional compact Riemannian manifold $(M,g)$ and show that the presence of a non-Killing conformal vector field $\xi $ on $M$ that is also an eigenvector of the Laplacian operator acting on smooth vector fields with eigenvalue $\lambda >0 $, together with an upper bound on the energy of the vector field $\xi $, implies that $M$ is isometric to the $n$-sphere $S^{n}(\lambda )$. We also introduce the notion of $\varphi $-analytic conformal vector fields, study their properties, and obtain a characterization of $n$-spheres using these vector
fields.
Keywords:
consider n dimensional compact riemannian manifold presence non killing conformal vector field eigenvector laplacian operator acting smooth vector fields eigenvalue lambda together upper bound energy vector field implies isometric n sphere lambda introduce notion varphi analytic conformal vector fields study their properties obtain characterization n spheres using these vector fields
Affiliations des auteurs :
Sharief Deshmukh 1 ; Falleh Al-Solamy 2
@article{10_4064_cm136_1_7,
author = {Sharief Deshmukh and Falleh Al-Solamy},
title = {A note on conformal vector fields
on a {Riemannian} manifold},
journal = {Colloquium Mathematicum},
pages = {65--73},
publisher = {mathdoc},
volume = {136},
number = {1},
year = {2014},
doi = {10.4064/cm136-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm136-1-7/}
}
TY - JOUR AU - Sharief Deshmukh AU - Falleh Al-Solamy TI - A note on conformal vector fields on a Riemannian manifold JO - Colloquium Mathematicum PY - 2014 SP - 65 EP - 73 VL - 136 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm136-1-7/ DO - 10.4064/cm136-1-7 LA - en ID - 10_4064_cm136_1_7 ER -
Sharief Deshmukh; Falleh Al-Solamy. A note on conformal vector fields on a Riemannian manifold. Colloquium Mathematicum, Tome 136 (2014) no. 1, pp. 65-73. doi: 10.4064/cm136-1-7
Cité par Sources :