A quantitative version of the converse
Taylor theorem: $C^{k,\omega }$-smoothness
Colloquium Mathematicum, Tome 136 (2014) no. 1, pp. 57-64
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove a uniform version of the converse Taylor theorem in infinite-dimensional spaces with an explicit relation between the moduli of continuity for mappings on a general open domain. We show that if the domain is convex and bounded, then we can extend the estimate up to the boundary.
Keywords:
prove uniform version converse taylor theorem infinite dimensional spaces explicit relation between moduli continuity mappings general domain domain convex bounded extend estimate boundary
Affiliations des auteurs :
Michal Johanis 1
@article{10_4064_cm136_1_6,
author = {Michal Johanis},
title = {A quantitative version of the converse
{Taylor} theorem: $C^{k,\omega }$-smoothness},
journal = {Colloquium Mathematicum},
pages = {57--64},
publisher = {mathdoc},
volume = {136},
number = {1},
year = {2014},
doi = {10.4064/cm136-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm136-1-6/}
}
TY - JOUR
AU - Michal Johanis
TI - A quantitative version of the converse
Taylor theorem: $C^{k,\omega }$-smoothness
JO - Colloquium Mathematicum
PY - 2014
SP - 57
EP - 64
VL - 136
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/cm136-1-6/
DO - 10.4064/cm136-1-6
LA - en
ID - 10_4064_cm136_1_6
ER -
Michal Johanis. A quantitative version of the converse
Taylor theorem: $C^{k,\omega }$-smoothness. Colloquium Mathematicum, Tome 136 (2014) no. 1, pp. 57-64. doi: 10.4064/cm136-1-6
Cité par Sources :