A quantitative version of the converse Taylor theorem: $C^{k,\omega }$-smoothness
Colloquium Mathematicum, Tome 136 (2014) no. 1, pp. 57-64.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove a uniform version of the converse Taylor theorem in infinite-dimensional spaces with an explicit relation between the moduli of continuity for mappings on a general open domain. We show that if the domain is convex and bounded, then we can extend the estimate up to the boundary.
DOI : 10.4064/cm136-1-6
Keywords: prove uniform version converse taylor theorem infinite dimensional spaces explicit relation between moduli continuity mappings general domain domain convex bounded extend estimate boundary

Michal Johanis 1

1 Department of Mathematical Analysis Charles University Sokolovská 83 186 75 Praha 8, Czech Republic
@article{10_4064_cm136_1_6,
     author = {Michal Johanis},
     title = {A quantitative version of the converse
 {Taylor} theorem: $C^{k,\omega }$-smoothness},
     journal = {Colloquium Mathematicum},
     pages = {57--64},
     publisher = {mathdoc},
     volume = {136},
     number = {1},
     year = {2014},
     doi = {10.4064/cm136-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm136-1-6/}
}
TY  - JOUR
AU  - Michal Johanis
TI  - A quantitative version of the converse
 Taylor theorem: $C^{k,\omega }$-smoothness
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 57
EP  - 64
VL  - 136
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm136-1-6/
DO  - 10.4064/cm136-1-6
LA  - en
ID  - 10_4064_cm136_1_6
ER  - 
%0 Journal Article
%A Michal Johanis
%T A quantitative version of the converse
 Taylor theorem: $C^{k,\omega }$-smoothness
%J Colloquium Mathematicum
%D 2014
%P 57-64
%V 136
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm136-1-6/
%R 10.4064/cm136-1-6
%G en
%F 10_4064_cm136_1_6
Michal Johanis. A quantitative version of the converse
 Taylor theorem: $C^{k,\omega }$-smoothness. Colloquium Mathematicum, Tome 136 (2014) no. 1, pp. 57-64. doi : 10.4064/cm136-1-6. http://geodesic.mathdoc.fr/articles/10.4064/cm136-1-6/

Cité par Sources :