On the index of an odd perfect number
Colloquium Mathematicum, Tome 136 (2014) no. 1, pp. 41-49
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Suppose that $N$ is an odd perfect number
and $q^\alpha$ is a prime power with $q^{\alpha}\,\|\, N $. Define the
index $m= \sigma(N/q^\alpha)/q^\alpha$. We prove
that $m$ cannot take the form $p^{2u}$, where $u$ is a positive
integer and $2u+1$ is composite. We also prove that, if $q$ is the
Euler prime, then $m$ cannot take any of the 30 forms $q_1$,
$q_1^2$, $q_1^3$, $q_1^4$, $q_1^5$, $q_1^6$, $q_1^7$, $q_1^8$,
$q_1q_2$, $q_1^2q_2$, $q_1^3q_2$, $q_1^4 q_2$, $q_1^5q_2$,
$q_1^2q_2^2$, $q_1^3q_2^2$, $q_1^4q_2^2$, $q_1q_2q_3$,
$q_1^2q_2q_3$, $q_1^3q_2q_3$, $q_1^4q_2q_3$, $q_1^2q_2^2q_3$,
$q_1^2q_2^2q_3^2$, $q_1q_2q_3q_4$,
$q_1^2q_2q_3q_4$, $q_1^3q_2q_3q_4$, $q_1^2q_2^2q_3q_4$,
$q_1q_2q_3q_4q_5$, $q_1^2q_2q_3q_4q_5$, $q_1q_2q_3q_4q_5q_6$,
$q_1q_2q_3q_4q_5q_6q_7$, where $q_1$, $q_2$, $q_3$, $q_4$, $q_5$,
$q_6$, $q_7$ are distinct odd primes. A similar result is proved
if $q$ is not the Euler prime. These extend recent results of
Broughan, Delbourgo, and Zhou. We also pose a related problem.
Keywords:
suppose odd perfect number alpha prime power alpha define index sigma alpha alpha prove cannot form where positive integer composite prove euler prime cannot forms where distinct odd primes similar result proved euler prime these extend recent results broughan delbourgo zhou pose related problem
Affiliations des auteurs :
Feng-Juan Chen 1 ; Yong-Gao Chen 2
@article{10_4064_cm136_1_4,
author = {Feng-Juan Chen and Yong-Gao Chen},
title = {On the index of an odd perfect number},
journal = {Colloquium Mathematicum},
pages = {41--49},
publisher = {mathdoc},
volume = {136},
number = {1},
year = {2014},
doi = {10.4064/cm136-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm136-1-4/}
}
Feng-Juan Chen; Yong-Gao Chen. On the index of an odd perfect number. Colloquium Mathematicum, Tome 136 (2014) no. 1, pp. 41-49. doi: 10.4064/cm136-1-4
Cité par Sources :