On the index of length four minimal zero-sum sequences
Colloquium Mathematicum, Tome 135 (2014) no. 2, pp. 201-209.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a finite cyclic group. Every sequence $S$ over $G$ can be written in the form $S=(n_1g)\cdot\ldots\cdot(n_lg)$ where $g\in G$ and $n_1, \ldots, n_l\in[1, {\rm ord}(g)]$, and the index ${\rm ind}(S)$ is defined to be the minimum of $(n_1+\cdots+n_l)/{\rm ord}(g)$ over all possible $g\in G$ such that $\langle g \rangle =G$. A conjecture says that every minimal zero-sum sequence of length 4 over a finite cyclic group $G$ with ${\rm gcd}(|G|, 6)=1$ has index 1. This conjecture was confirmed recently for the case when $|G|$ is a product of at most two prime powers. However, the general case is still open. In this paper, we make some progress towards solving the general case. We show that if $G=\langle g\rangle$ is a finite cyclic group of order $|G|= n$ such that ${\rm gcd}(n,6)=1$ and $S=(x_1g)\cdot(x_2g)\cdot(x_3g)\cdot(x_4g)$ is a minimal zero-sum sequence over $G$ such that $x_1,\dots,x_4\in[1,n-1]$ with ${\rm gcd}(n,x_1,x_2,x_3,x_4)=1$, and ${\rm gcd}(n,x_i)>1$ for some $i\in[1,4]$, then ${\rm ind}(S)=1$. By using a new method, we give a much shorter proof to the index conjecture for the case when $|G|$ is a product of two prime powers.
DOI : 10.4064/cm135-2-4
Keywords: finite cyclic group every sequence written form cdot ldots cdot where ldots ord index ind defined minimum cdots ord possible langle rangle conjecture says every minimal zero sum sequence length finite cyclic group gcd has index conjecture confirmed recently product prime powers however general still paper make progress towards solving general langle rangle finite cyclic group order gcd cdot cdot cdot minimal zero sum sequence dots n gcd gcd ind using method much shorter proof index conjecture product prime powers

Caixia Shen 1 ; Li-meng Xia 1 ; Yuanlin Li 2

1 Faculty of Science Jiangsu University Zhenjiang, 212013, Jiangsu Prov., China
2 Department of Mathematics Brock University St. Catharines, ON Canada L2S 3A1
@article{10_4064_cm135_2_4,
     author = {Caixia Shen and Li-meng Xia and Yuanlin Li},
     title = {On the index of length four minimal
 zero-sum sequences},
     journal = {Colloquium Mathematicum},
     pages = {201--209},
     publisher = {mathdoc},
     volume = {135},
     number = {2},
     year = {2014},
     doi = {10.4064/cm135-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm135-2-4/}
}
TY  - JOUR
AU  - Caixia Shen
AU  - Li-meng Xia
AU  - Yuanlin Li
TI  - On the index of length four minimal
 zero-sum sequences
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 201
EP  - 209
VL  - 135
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm135-2-4/
DO  - 10.4064/cm135-2-4
LA  - en
ID  - 10_4064_cm135_2_4
ER  - 
%0 Journal Article
%A Caixia Shen
%A Li-meng Xia
%A Yuanlin Li
%T On the index of length four minimal
 zero-sum sequences
%J Colloquium Mathematicum
%D 2014
%P 201-209
%V 135
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm135-2-4/
%R 10.4064/cm135-2-4
%G en
%F 10_4064_cm135_2_4
Caixia Shen; Li-meng Xia; Yuanlin Li. On the index of length four minimal
 zero-sum sequences. Colloquium Mathematicum, Tome 135 (2014) no. 2, pp. 201-209. doi : 10.4064/cm135-2-4. http://geodesic.mathdoc.fr/articles/10.4064/cm135-2-4/

Cité par Sources :