Normal numbers and the middle prime factor of an integer
Colloquium Mathematicum, Tome 135 (2014) no. 1, pp. 69-77.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $p_m(n)$ stand for the middle prime factor of the integer $n\ge 2$. We first establish that the size of $\log p_m(n)$ is close to $\sqrt {\log n}$ for almost all $n$. We then show how one can use the successive values of $p_m(n)$ to generate a normal number in any given base $D\ge 2$. Finally, we study the behavior of exponential sums involving the middle prime factor function.
DOI : 10.4064/cm135-1-5
Keywords: stand middle prime factor integer first establish size log close sqrt log almost successive values generate normal number given base finally study behavior exponential sums involving middle prime factor function

Jean-Marie De Koninck 1 ; Imre Kátai 2

1 Département de mathématiques et de statistique Université Laval Québec, QC G1V 0A6, Canada
2 Computer Algebra Department Eötvös Lorand University Pázmány Péter sétány 1/C 1117 Budapest, Hungary
@article{10_4064_cm135_1_5,
     author = {Jean-Marie De Koninck and Imre K\'atai},
     title = {Normal numbers and the middle prime factor
 of an integer},
     journal = {Colloquium Mathematicum},
     pages = {69--77},
     publisher = {mathdoc},
     volume = {135},
     number = {1},
     year = {2014},
     doi = {10.4064/cm135-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-5/}
}
TY  - JOUR
AU  - Jean-Marie De Koninck
AU  - Imre Kátai
TI  - Normal numbers and the middle prime factor
 of an integer
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 69
EP  - 77
VL  - 135
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-5/
DO  - 10.4064/cm135-1-5
LA  - en
ID  - 10_4064_cm135_1_5
ER  - 
%0 Journal Article
%A Jean-Marie De Koninck
%A Imre Kátai
%T Normal numbers and the middle prime factor
 of an integer
%J Colloquium Mathematicum
%D 2014
%P 69-77
%V 135
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-5/
%R 10.4064/cm135-1-5
%G en
%F 10_4064_cm135_1_5
Jean-Marie De Koninck; Imre Kátai. Normal numbers and the middle prime factor
 of an integer. Colloquium Mathematicum, Tome 135 (2014) no. 1, pp. 69-77. doi : 10.4064/cm135-1-5. http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-5/

Cité par Sources :