Normal numbers and the middle prime factor
of an integer
Colloquium Mathematicum, Tome 135 (2014) no. 1, pp. 69-77
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $p_m(n)$ stand for the middle prime factor of the integer $n\ge 2$. We first establish that the size of $\log p_m(n)$ is close to $\sqrt {\log n}$ for almost all $n$. We then show how one can use the successive values of $p_m(n)$ to generate a normal number in any given base $D\ge 2$. Finally, we study the behavior of exponential sums involving the middle prime factor function.
Keywords:
stand middle prime factor integer first establish size log close sqrt log almost successive values generate normal number given base finally study behavior exponential sums involving middle prime factor function
Affiliations des auteurs :
Jean-Marie De Koninck 1 ; Imre Kátai 2
@article{10_4064_cm135_1_5,
author = {Jean-Marie De Koninck and Imre K\'atai},
title = {Normal numbers and the middle prime factor
of an integer},
journal = {Colloquium Mathematicum},
pages = {69--77},
publisher = {mathdoc},
volume = {135},
number = {1},
year = {2014},
doi = {10.4064/cm135-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-5/}
}
TY - JOUR AU - Jean-Marie De Koninck AU - Imre Kátai TI - Normal numbers and the middle prime factor of an integer JO - Colloquium Mathematicum PY - 2014 SP - 69 EP - 77 VL - 135 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-5/ DO - 10.4064/cm135-1-5 LA - en ID - 10_4064_cm135_1_5 ER -
Jean-Marie De Koninck; Imre Kátai. Normal numbers and the middle prime factor of an integer. Colloquium Mathematicum, Tome 135 (2014) no. 1, pp. 69-77. doi: 10.4064/cm135-1-5
Cité par Sources :