Counting linearly ordered spaces
Colloquium Mathematicum, Tome 135 (2014) no. 1, pp. 1-14.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a transfinite cardinal $\kappa $ and $i\in \{0,1,2\}$ let ${\cal L}_i(\kappa )$ be the class of all linearly ordered spaces $X$ of size $\kappa $ such that $X$ is {totally disconnected} when $i=0$, the topology of $X$ is generated by a {dense} linear ordering of $X$ when $i=1$, and $X$ is {compact} when $i=2$. Thus every space in ${\cal L}_1(\kappa )\cap {\cal L}_2(\kappa )$ is connected and hence ${\cal L}_1(\kappa )\cap {\cal L}_2(\kappa )=\emptyset $ if $\kappa 2^{\aleph _0}$, and ${\cal L}_0(\kappa )\cap {\cal L}_1(\kappa )\cap {\cal L}_2(\kappa )=\emptyset $ for arbitrary $\kappa $. All spaces in ${\cal L}_1(\aleph _0)$ are homeomorphic, while ${\cal L}_2(\aleph _0)$ contains precisely $\aleph _1$ spaces up to homeomorphism. The class ${\cal L}_1(\kappa )\cap {\cal L}_2(\kappa )$ contains precisely $2^\kappa $ spaces up to homeomorphism for every $\kappa \geq 2^{\aleph _0}$. Our main results are explicit constructions which prove that both classes ${\cal L}_0(\kappa )\cap {\cal L}_1(\kappa )$ and ${\cal L}_0(\kappa )\cap {\cal L}_2(\kappa )$ contain precisely $2^\kappa $ spaces up to homeomorphism for every $\kappa >\aleph _0$. Moreover, for any $\kappa $ we investigate the variety of second countable spaces in the class ${\cal L}_0(\kappa )\cap {\cal L}_1(\kappa )$ and the variety of first countable spaces of arbitrary weight in the class ${\cal L}_2(\kappa )$.
DOI : 10.4064/cm135-1-1
Keywords: transfinite cardinal kappa cal kappa class linearly ordered spaces size kappa totally disconnected topology generated dense linear ordering compact every space cal kappa cap cal kappa connected hence cal kappa cap cal kappa emptyset kappa aleph cal kappa cap cal kappa cap cal kappa emptyset arbitrary kappa spaces cal aleph homeomorphic while cal aleph contains precisely aleph spaces homeomorphism class cal kappa cap cal kappa contains precisely kappa spaces homeomorphism every kappa geq aleph main results explicit constructions which prove classes cal kappa cap cal kappa cal kappa cap cal kappa contain precisely kappa spaces homeomorphism every kappa aleph moreover kappa investigate variety second countable spaces class cal kappa cap cal kappa variety first countable spaces arbitrary weight class cal kappa

Gerald Kuba 1

1 Institute of Mathematics University of Natural Resources and Life Sciences 1180 Wien, Austria
@article{10_4064_cm135_1_1,
     author = {Gerald Kuba},
     title = {Counting linearly ordered spaces},
     journal = {Colloquium Mathematicum},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {135},
     number = {1},
     year = {2014},
     doi = {10.4064/cm135-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-1/}
}
TY  - JOUR
AU  - Gerald Kuba
TI  - Counting linearly ordered spaces
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 1
EP  - 14
VL  - 135
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-1/
DO  - 10.4064/cm135-1-1
LA  - en
ID  - 10_4064_cm135_1_1
ER  - 
%0 Journal Article
%A Gerald Kuba
%T Counting linearly ordered spaces
%J Colloquium Mathematicum
%D 2014
%P 1-14
%V 135
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-1/
%R 10.4064/cm135-1-1
%G en
%F 10_4064_cm135_1_1
Gerald Kuba. Counting linearly ordered spaces. Colloquium Mathematicum, Tome 135 (2014) no. 1, pp. 1-14. doi : 10.4064/cm135-1-1. http://geodesic.mathdoc.fr/articles/10.4064/cm135-1-1/

Cité par Sources :