Relationships between generalized Heisenberg algebras and the classical Heisenberg algebra
Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 255-265.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A Lie algebra is called a generalized Heisenberg algebra of degree $n$ if its centre coincides with its derived algebra and is $n$-dimensional. In this paper we define for each positive integer $n$ a generalized Heisenberg algebra $\mathcal {H}_{n}$. We show that $\mathcal {H}_{n}$ and $\mathcal {H}_{1}^{n}$, the Lie algebra which is the direct product of $n$ copies of $\mathcal {H}_{1}$, contain isomorphic copies of each other. We show that $\mathcal {H}_{n}$ is an indecomposable Lie algebra. We prove that $\mathcal {H}_{n}$ and $\mathcal {H}_{1}^{n}$ are not quotients of each other when $n \geq 2$, but $\mathcal {H}_{1}$ is a quotient of $\mathcal {H}_{n}$ for each positive integer $n$. These results are used to obtain several families of $\mathcal {H}_{n}$-modules from the Fock space representation of $\mathcal {H}_{1}$. Analogues of Verma modules for $\mathcal {H}_{n}$, $n \geq 2$, are also constructed using the set of rational primes.
DOI : 10.4064/cm134-2-9
Keywords: lie algebra called generalized heisenberg algebra degree its centre coincides its derived algebra n dimensional paper define each positive integer generalized heisenberg algebra mathcal mathcal mathcal lie algebra which direct product copies mathcal contain isomorphic copies each other mathcal indecomposable lie algebra prove mathcal mathcal quotients each other geq mathcal quotient mathcal each positive integer these results obtain several families mathcal modules fock space representation mathcal analogues verma modules mathcal geq constructed using set rational primes

Marc Fabbri 1 ; Frank Okoh 2

1 Department of Mathematics Pennsylvania State University University Park, PA 16802-6401, U.S.A.
2 Department of Mathematics Wayne State University Detroit, MI 48202-3622, U.S.A.
@article{10_4064_cm134_2_9,
     author = {Marc Fabbri and Frank Okoh},
     title = {Relationships between generalized {Heisenberg} algebras and the classical {Heisenberg} algebra},
     journal = {Colloquium Mathematicum},
     pages = {255--265},
     publisher = {mathdoc},
     volume = {134},
     number = {2},
     year = {2014},
     doi = {10.4064/cm134-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-9/}
}
TY  - JOUR
AU  - Marc Fabbri
AU  - Frank Okoh
TI  - Relationships between generalized Heisenberg algebras and the classical Heisenberg algebra
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 255
EP  - 265
VL  - 134
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-9/
DO  - 10.4064/cm134-2-9
LA  - en
ID  - 10_4064_cm134_2_9
ER  - 
%0 Journal Article
%A Marc Fabbri
%A Frank Okoh
%T Relationships between generalized Heisenberg algebras and the classical Heisenberg algebra
%J Colloquium Mathematicum
%D 2014
%P 255-265
%V 134
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-9/
%R 10.4064/cm134-2-9
%G en
%F 10_4064_cm134_2_9
Marc Fabbri; Frank Okoh. Relationships between generalized Heisenberg algebras and the classical Heisenberg algebra. Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 255-265. doi : 10.4064/cm134-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-9/

Cité par Sources :