Continuity of halo functions associated to homothecy invariant density bases
Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 235-243.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathcal{B}$ be a collection of bounded open sets in $\mathbb{R}^{n}$ such that, for any $x \in \mathbb{R}^{n}$, there exists a set $U \in \mathcal{B}$ of arbitrarily small diameter containing $x$. The collection $\mathcal{B}$ is said to be a density basis provided that, given a measurable set $A \subset \mathbb{R}^{n}$, for a.e. $x \in \mathbb{R}^{n}$ we have $$ \lim_{k \rightarrow \infty}\frac{1}{|R_{k}|}\int_{R_{k}}\chi_{A} = \chi_{A}(x) $$ for any sequence $\{R_{k}\}$ of sets in $\mathcal{B}$ containing $x$ whose diameters tend to 0. The geometric maximal operator $M_{\mathcal{B}}$ associated to $\mathcal{B}$ is defined on $L^{1}(\mathbb{R}^n)$ by \[ M_{\mathcal{B}}f(x) = \sup_{x \in R \in \mathcal{B}}\frac{1}{|R|}\int_{R}|f|. \] The halo function $\phi$ of $\mathcal{B}$ is defined on $(1,\infty)$ by $$ \phi(u) = \sup \left\{\frac{1}{|A|}\left|\left\{x \in \mathbb{R}^{n} : M_{\mathcal{B}}\chi_{A}(x) > \frac{1}{u}\right\}\right| : 0 |A| \infty\right\} $$ and on $[0,1]$ by $\phi(u) = u$. It is shown that the halo function associated to any homothecy invariant density basis is a continuous function on $(1,\infty)$. However, an example of a homothecy invariant density basis is provided such that the associated halo function is not continuous at 1.
DOI : 10.4064/cm134-2-7
Keywords: mathcal collection bounded sets mathbb mathbb there exists set mathcal arbitrarily small diameter containing nbsp collection mathcal said density basis provided given measurable set subset mathbb mathbb have lim rightarrow infty frac int chi chi sequence sets mathcal containing whose diameters tend geometric maximal operator mathcal associated mathcal defined mathbb mathcal sup mathcal frac int halo function phi mathcal defined infty phi sup frac mathbb mathcal chi frac right right infty right phi shown halo function associated homothecy invariant density basis continuous function infty however example homothecy invariant density basis provided associated halo function continuous

Oleksandra Beznosova 1 ; Paul Hagelstein 1

1 Department of Mathematics Baylor University Waco, TX 76798, U.S.A.
@article{10_4064_cm134_2_7,
     author = {Oleksandra Beznosova and Paul Hagelstein},
     title = {Continuity of halo functions associated to homothecy invariant density bases},
     journal = {Colloquium Mathematicum},
     pages = {235--243},
     publisher = {mathdoc},
     volume = {134},
     number = {2},
     year = {2014},
     doi = {10.4064/cm134-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-7/}
}
TY  - JOUR
AU  - Oleksandra Beznosova
AU  - Paul Hagelstein
TI  - Continuity of halo functions associated to homothecy invariant density bases
JO  - Colloquium Mathematicum
PY  - 2014
SP  - 235
EP  - 243
VL  - 134
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-7/
DO  - 10.4064/cm134-2-7
LA  - en
ID  - 10_4064_cm134_2_7
ER  - 
%0 Journal Article
%A Oleksandra Beznosova
%A Paul Hagelstein
%T Continuity of halo functions associated to homothecy invariant density bases
%J Colloquium Mathematicum
%D 2014
%P 235-243
%V 134
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-7/
%R 10.4064/cm134-2-7
%G en
%F 10_4064_cm134_2_7
Oleksandra Beznosova; Paul Hagelstein. Continuity of halo functions associated to homothecy invariant density bases. Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 235-243. doi : 10.4064/cm134-2-7. http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-7/

Cité par Sources :