Continuity of halo functions associated to homothecy invariant density bases
Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 235-243
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mathcal{B}$ be a collection of bounded open sets in $\mathbb{R}^{n}$
such that, for any $x \in \mathbb{R}^{n}$, there exists a set $U \in
\mathcal{B}$ of arbitrarily small diameter containing $x$.
The collection $\mathcal{B}$ is said to be a density basis provided that,
given a measurable set $A \subset \mathbb{R}^{n}$, for a.e. $x \in
\mathbb{R}^{n}$ we have
$$
\lim_{k \rightarrow \infty}\frac{1}{|R_{k}|}\int_{R_{k}}\chi_{A} = \chi_{A}(x)
$$
for any sequence $\{R_{k}\}$ of sets in $\mathcal{B}$ containing
$x$ whose diameters tend to 0. The geometric maximal operator
$M_{\mathcal{B}}$ associated to $\mathcal{B}$ is defined on
$L^{1}(\mathbb{R}^n)$ by
\[
M_{\mathcal{B}}f(x) = \sup_{x \in R \in
\mathcal{B}}\frac{1}{|R|}\int_{R}|f|.
\]
The halo function
$\phi$ of $\mathcal{B}$ is defined on $(1,\infty)$ by
$$
\phi(u) = \sup \left\{\frac{1}{|A|}\left|\left\{x \in \mathbb{R}^{n} :
M_{\mathcal{B}}\chi_{A}(x) > \frac{1}{u}\right\}\right| : 0 |A| \infty\right\}
$$
and on $[0,1]$ by $\phi(u) = u$. It is shown that the halo function
associated to any homothecy invariant density basis is a continuous
function on $(1,\infty)$. However, an example of a homothecy
invariant density basis is provided such that the associated halo
function is not continuous at 1.
Keywords:
mathcal collection bounded sets mathbb mathbb there exists set mathcal arbitrarily small diameter containing nbsp collection mathcal said density basis provided given measurable set subset mathbb mathbb have lim rightarrow infty frac int chi chi sequence sets mathcal containing whose diameters tend geometric maximal operator mathcal associated mathcal defined mathbb mathcal sup mathcal frac int halo function phi mathcal defined infty phi sup frac mathbb mathcal chi frac right right infty right phi shown halo function associated homothecy invariant density basis continuous function infty however example homothecy invariant density basis provided associated halo function continuous
Affiliations des auteurs :
Oleksandra Beznosova 1 ; Paul Hagelstein 1
@article{10_4064_cm134_2_7,
author = {Oleksandra Beznosova and Paul Hagelstein},
title = {Continuity of halo functions associated to homothecy invariant density bases},
journal = {Colloquium Mathematicum},
pages = {235--243},
publisher = {mathdoc},
volume = {134},
number = {2},
year = {2014},
doi = {10.4064/cm134-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-7/}
}
TY - JOUR AU - Oleksandra Beznosova AU - Paul Hagelstein TI - Continuity of halo functions associated to homothecy invariant density bases JO - Colloquium Mathematicum PY - 2014 SP - 235 EP - 243 VL - 134 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-7/ DO - 10.4064/cm134-2-7 LA - en ID - 10_4064_cm134_2_7 ER -
%0 Journal Article %A Oleksandra Beznosova %A Paul Hagelstein %T Continuity of halo functions associated to homothecy invariant density bases %J Colloquium Mathematicum %D 2014 %P 235-243 %V 134 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm134-2-7/ %R 10.4064/cm134-2-7 %G en %F 10_4064_cm134_2_7
Oleksandra Beznosova; Paul Hagelstein. Continuity of halo functions associated to homothecy invariant density bases. Colloquium Mathematicum, Tome 134 (2014) no. 2, pp. 235-243. doi: 10.4064/cm134-2-7
Cité par Sources :