On near-perfect and deficient-perfect numbers
Colloquium Mathematicum, Tome 133 (2013) no. 2, pp. 221-226.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a positive integer $n$, let $\sigma (n)$ denote the sum of the positive divisors of $n$. Let $d$ be a proper divisor of $n$. We call $n$ a near-perfect number if $\sigma (n) = 2n + d$, and a deficient-perfect number if $\sigma (n) = 2n - d$. We show that there is no odd near-perfect number with three distinct prime divisors and determine all deficient-perfect numbers with at most two distinct prime factors.
DOI : 10.4064/cm133-2-8
Keywords: positive integer sigma denote sum positive divisors proper divisor call near perfect number sigma deficient perfect number sigma there odd near perfect number three distinct prime divisors determine deficient perfect numbers distinct prime factors

Min Tang 1 ; Xiao-Zhi Ren 2 ; Meng Li 1

1 Department of Mathematics Anhui Normal University Wuhu 241003, China
2 School of Mathematical Sciences Nanjing Normal University Nanjing 210023, China
@article{10_4064_cm133_2_8,
     author = {Min Tang and Xiao-Zhi Ren and Meng Li},
     title = {On near-perfect and deficient-perfect numbers},
     journal = {Colloquium Mathematicum},
     pages = {221--226},
     publisher = {mathdoc},
     volume = {133},
     number = {2},
     year = {2013},
     doi = {10.4064/cm133-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-8/}
}
TY  - JOUR
AU  - Min Tang
AU  - Xiao-Zhi Ren
AU  - Meng Li
TI  - On near-perfect and deficient-perfect numbers
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 221
EP  - 226
VL  - 133
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-8/
DO  - 10.4064/cm133-2-8
LA  - en
ID  - 10_4064_cm133_2_8
ER  - 
%0 Journal Article
%A Min Tang
%A Xiao-Zhi Ren
%A Meng Li
%T On near-perfect and deficient-perfect numbers
%J Colloquium Mathematicum
%D 2013
%P 221-226
%V 133
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-8/
%R 10.4064/cm133-2-8
%G en
%F 10_4064_cm133_2_8
Min Tang; Xiao-Zhi Ren; Meng Li. On near-perfect and deficient-perfect numbers. Colloquium Mathematicum, Tome 133 (2013) no. 2, pp. 221-226. doi : 10.4064/cm133-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-8/

Cité par Sources :