On near-perfect and deficient-perfect numbers
Colloquium Mathematicum, Tome 133 (2013) no. 2, pp. 221-226
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a positive integer $n$, let $\sigma (n)$ denote the sum of the positive divisors of $n$. Let $d$ be a proper divisor of $n$. We call $n$ a near-perfect number if $\sigma (n) = 2n + d$, and a deficient-perfect number if $\sigma (n) = 2n - d$. We show that there is no odd near-perfect number with three distinct prime divisors and determine all deficient-perfect numbers with at most two distinct prime factors.
Keywords:
positive integer sigma denote sum positive divisors proper divisor call near perfect number sigma deficient perfect number sigma there odd near perfect number three distinct prime divisors determine deficient perfect numbers distinct prime factors
Affiliations des auteurs :
Min Tang 1 ; Xiao-Zhi Ren 2 ; Meng Li 1
@article{10_4064_cm133_2_8,
author = {Min Tang and Xiao-Zhi Ren and Meng Li},
title = {On near-perfect and deficient-perfect numbers},
journal = {Colloquium Mathematicum},
pages = {221--226},
publisher = {mathdoc},
volume = {133},
number = {2},
year = {2013},
doi = {10.4064/cm133-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-8/}
}
TY - JOUR AU - Min Tang AU - Xiao-Zhi Ren AU - Meng Li TI - On near-perfect and deficient-perfect numbers JO - Colloquium Mathematicum PY - 2013 SP - 221 EP - 226 VL - 133 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm133-2-8/ DO - 10.4064/cm133-2-8 LA - en ID - 10_4064_cm133_2_8 ER -
Min Tang; Xiao-Zhi Ren; Meng Li. On near-perfect and deficient-perfect numbers. Colloquium Mathematicum, Tome 133 (2013) no. 2, pp. 221-226. doi: 10.4064/cm133-2-8
Cité par Sources :