Radicals of symmetric cellular algebras
Colloquium Mathematicum, Tome 133 (2013) no. 1, pp. 67-83.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a symmetric cellular algebra, we study properties of the dual basis of a cellular basis first. Then a nilpotent ideal is constructed. The ideal connects the radicals of cell modules with the radical of the algebra. It also yields some information on the dimensions of simple modules. As a by-product, we obtain some equivalent conditions for a finite-dimensional symmetric cellular algebra to be semisimple.
DOI : 10.4064/cm133-1-5
Keywords: symmetric cellular algebra study properties dual basis cellular basis first nilpotent ideal constructed ideal connects radicals cell modules radical algebra yields information dimensions simple modules by product obtain equivalent conditions finite dimensional symmetric cellular algebra semisimple

Yanbo Li 1

1 School of Mathematics and Statistics Northeastern University at Qinhuangdao Qinhuangdao, 066004, P.R. China
@article{10_4064_cm133_1_5,
     author = {Yanbo Li},
     title = {Radicals of symmetric cellular algebras},
     journal = {Colloquium Mathematicum},
     pages = {67--83},
     publisher = {mathdoc},
     volume = {133},
     number = {1},
     year = {2013},
     doi = {10.4064/cm133-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-5/}
}
TY  - JOUR
AU  - Yanbo Li
TI  - Radicals of symmetric cellular algebras
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 67
EP  - 83
VL  - 133
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-5/
DO  - 10.4064/cm133-1-5
LA  - en
ID  - 10_4064_cm133_1_5
ER  - 
%0 Journal Article
%A Yanbo Li
%T Radicals of symmetric cellular algebras
%J Colloquium Mathematicum
%D 2013
%P 67-83
%V 133
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-5/
%R 10.4064/cm133-1-5
%G en
%F 10_4064_cm133_1_5
Yanbo Li. Radicals of symmetric cellular algebras. Colloquium Mathematicum, Tome 133 (2013) no. 1, pp. 67-83. doi : 10.4064/cm133-1-5. http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-5/

Cité par Sources :