Explicit upper bounds for $|L(1, \chi )|$ when $\chi (3)=0$
Colloquium Mathematicum, Tome 133 (2013) no. 1, pp. 23-34.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\chi $ be a primitive Dirichlet character of conductor $q$ and denote by $L(z, \chi )$ the associated $L$-series. We provide an explicit upper bound for $|L(1, \chi )|$ when $3$ divides $q$.
DOI : 10.4064/cm133-1-2
Keywords: chi primitive dirichlet character conductor denote chi associated l series provide explicit upper bound chi divides nbsp

David J. Platt 1 ; Sumaia Saad Eddin 2

1 Heilbronn Institute for Mathematical Research University of Bristol University Walk Bristol, BS8 1TW, United Kingdom
2 Laboratoire Paul Painlevé Université des Sciences et Technologies de Lille Bâtiment M2, Cité Scientifique 59655 Villeneuve d'Ascq Cédex, France
@article{10_4064_cm133_1_2,
     author = {David J. Platt and Sumaia Saad Eddin},
     title = {Explicit upper bounds for $|L(1, \chi )|$ when $\chi (3)=0$},
     journal = {Colloquium Mathematicum},
     pages = {23--34},
     publisher = {mathdoc},
     volume = {133},
     number = {1},
     year = {2013},
     doi = {10.4064/cm133-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-2/}
}
TY  - JOUR
AU  - David J. Platt
AU  - Sumaia Saad Eddin
TI  - Explicit upper bounds for $|L(1, \chi )|$ when $\chi (3)=0$
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 23
EP  - 34
VL  - 133
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-2/
DO  - 10.4064/cm133-1-2
LA  - en
ID  - 10_4064_cm133_1_2
ER  - 
%0 Journal Article
%A David J. Platt
%A Sumaia Saad Eddin
%T Explicit upper bounds for $|L(1, \chi )|$ when $\chi (3)=0$
%J Colloquium Mathematicum
%D 2013
%P 23-34
%V 133
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-2/
%R 10.4064/cm133-1-2
%G en
%F 10_4064_cm133_1_2
David J. Platt; Sumaia Saad Eddin. Explicit upper bounds for $|L(1, \chi )|$ when $\chi (3)=0$. Colloquium Mathematicum, Tome 133 (2013) no. 1, pp. 23-34. doi : 10.4064/cm133-1-2. http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-2/

Cité par Sources :