Explicit upper bounds for $|L(1, \chi )|$ when $\chi (3)=0$
Colloquium Mathematicum, Tome 133 (2013) no. 1, pp. 23-34
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\chi $ be a primitive Dirichlet character of conductor $q$ and denote by $L(z, \chi )$ the associated $L$-series. We provide an explicit upper bound for $|L(1, \chi )|$ when $3$ divides $q$.
Keywords:
chi primitive dirichlet character conductor denote chi associated l series provide explicit upper bound chi divides nbsp
Affiliations des auteurs :
David J. Platt 1 ; Sumaia Saad Eddin 2
@article{10_4064_cm133_1_2,
author = {David J. Platt and Sumaia Saad Eddin},
title = {Explicit upper bounds for $|L(1, \chi )|$ when $\chi (3)=0$},
journal = {Colloquium Mathematicum},
pages = {23--34},
publisher = {mathdoc},
volume = {133},
number = {1},
year = {2013},
doi = {10.4064/cm133-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-2/}
}
TY - JOUR AU - David J. Platt AU - Sumaia Saad Eddin TI - Explicit upper bounds for $|L(1, \chi )|$ when $\chi (3)=0$ JO - Colloquium Mathematicum PY - 2013 SP - 23 EP - 34 VL - 133 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm133-1-2/ DO - 10.4064/cm133-1-2 LA - en ID - 10_4064_cm133_1_2 ER -
David J. Platt; Sumaia Saad Eddin. Explicit upper bounds for $|L(1, \chi )|$ when $\chi (3)=0$. Colloquium Mathematicum, Tome 133 (2013) no. 1, pp. 23-34. doi: 10.4064/cm133-1-2
Cité par Sources :