Equivariant $K$-theory of flag varieties revisited and related results
Colloquium Mathematicum, Tome 132 (2013) no. 2, pp. 151-175
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We obtain several several results on the multiplicative structure constants of the $T$-equivariant Grothendieck ring $K_{T}(G/B)$ of the flag variety $G/B$. We do this by lifting the classes of the structure sheaves of Schubert varieties in $K_{T}(G/B)$ to $R(T)\otimes R(T)$, where $R(T)$ denotes the representation ring of the torus $T$. We further apply our results to describe the multiplicative structure constants of $K(X)_{\mathbb {Q}}$ where $X$ denotes the wonderful compactification of the adjoint group of $G$, in terms of the structure constants of Schubert varieties in the Grothendieck ring of $G/B$.
Keywords:
obtain several several results multiplicative structure constants t equivariant grothendieck ring flag variety lifting classes structure sheaves schubert varieties otimes where denotes representation ring torus nbsp further apply results describe multiplicative structure constants mathbb where denotes wonderful compactification adjoint group nbsp terms structure constants schubert varieties grothendieck ring
Affiliations des auteurs :
V. Uma 1
@article{10_4064_cm132_2_1,
author = {V. Uma},
title = {Equivariant $K$-theory of flag varieties revisited and related results},
journal = {Colloquium Mathematicum},
pages = {151--175},
publisher = {mathdoc},
volume = {132},
number = {2},
year = {2013},
doi = {10.4064/cm132-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm132-2-1/}
}
TY - JOUR AU - V. Uma TI - Equivariant $K$-theory of flag varieties revisited and related results JO - Colloquium Mathematicum PY - 2013 SP - 151 EP - 175 VL - 132 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm132-2-1/ DO - 10.4064/cm132-2-1 LA - en ID - 10_4064_cm132_2_1 ER -
V. Uma. Equivariant $K$-theory of flag varieties revisited and related results. Colloquium Mathematicum, Tome 132 (2013) no. 2, pp. 151-175. doi: 10.4064/cm132-2-1
Cité par Sources :