A class of irreducible polynomials
Colloquium Mathematicum, Tome 132 (2013) no. 1, pp. 113-119
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let \[ f(x)=x^n+k_{n-1}x^{n-1}+k_{n-2}x^{n-2}+\cdots +k_1x+k_0\in \mathbb {Z}[x], \] where \[ 3\le k_{n-1}\le k_{n-2}\le \cdots \le k_1\le k_0\le 2k_{n-1}-3. \] We show that $f(x)$ and $f(x^2)$ are irreducible over $\mathbb {Q}$. Moreover, the upper bound of $2k_{n-1}-3$ on the coefficients of $f(x)$ is the best possible in this situation.
Keywords:
n n n n cdots mathbb where n n cdots n irreducible mathbb moreover upper bound n coefficients best possible situation
Affiliations des auteurs :
Joshua Harrington 1 ; Lenny Jones 2
@article{10_4064_cm132_1_9,
author = {Joshua Harrington and Lenny Jones},
title = {A class of irreducible polynomials},
journal = {Colloquium Mathematicum},
pages = {113--119},
publisher = {mathdoc},
volume = {132},
number = {1},
year = {2013},
doi = {10.4064/cm132-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-9/}
}
Joshua Harrington; Lenny Jones. A class of irreducible polynomials. Colloquium Mathematicum, Tome 132 (2013) no. 1, pp. 113-119. doi: 10.4064/cm132-1-9
Cité par Sources :