A class of irreducible polynomials
Colloquium Mathematicum, Tome 132 (2013) no. 1, pp. 113-119.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let \[ f(x)=x^n+k_{n-1}x^{n-1}+k_{n-2}x^{n-2}+\cdots +k_1x+k_0\in \mathbb {Z}[x], \] where \[ 3\le k_{n-1}\le k_{n-2}\le \cdots \le k_1\le k_0\le 2k_{n-1}-3. \] We show that $f(x)$ and $f(x^2)$ are irreducible over $\mathbb {Q}$. Moreover, the upper bound of $2k_{n-1}-3$ on the coefficients of $f(x)$ is the best possible in this situation.
DOI : 10.4064/cm132-1-9
Keywords: n n n n cdots mathbb where n n cdots n irreducible mathbb moreover upper bound n coefficients best possible situation

Joshua Harrington 1 ; Lenny Jones 2

1 Department of Mathematics University of South Carolina Columbia, SC 29208, U.S.A.
2 Department of Mathematics Shippensburg University Shippensburg, PA 17257, U.S.A.
@article{10_4064_cm132_1_9,
     author = {Joshua Harrington and Lenny Jones},
     title = {A class of irreducible polynomials},
     journal = {Colloquium Mathematicum},
     pages = {113--119},
     publisher = {mathdoc},
     volume = {132},
     number = {1},
     year = {2013},
     doi = {10.4064/cm132-1-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-9/}
}
TY  - JOUR
AU  - Joshua Harrington
AU  - Lenny Jones
TI  - A class of irreducible polynomials
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 113
EP  - 119
VL  - 132
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-9/
DO  - 10.4064/cm132-1-9
LA  - en
ID  - 10_4064_cm132_1_9
ER  - 
%0 Journal Article
%A Joshua Harrington
%A Lenny Jones
%T A class of irreducible polynomials
%J Colloquium Mathematicum
%D 2013
%P 113-119
%V 132
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-9/
%R 10.4064/cm132-1-9
%G en
%F 10_4064_cm132_1_9
Joshua Harrington; Lenny Jones. A class of irreducible polynomials. Colloquium Mathematicum, Tome 132 (2013) no. 1, pp. 113-119. doi : 10.4064/cm132-1-9. http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-9/

Cité par Sources :