The Diophantine equation $(bn)^{x}+(2n)^{y}=((b+2)n)^{z}$
Colloquium Mathematicum, Tome 132 (2013) no. 1, pp. 95-100
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Recently, Miyazaki and Togbé proved that for any fixed odd integer $b\geq 5$ with $b\not =89$, the Diophantine equation $b^{x}+2^{y}=(b+2)^{z}$ has only the solution $(x,y,z)=(1,1,1)$. We give an extension of this result.
Mots-clés :
recently miyazaki togb proved fixed odd integer geq diophantine equation has only solution extension result
Affiliations des auteurs :
Min Tang 1 ; Quan-Hui Yang 2
@article{10_4064_cm132_1_7,
author = {Min Tang and Quan-Hui Yang},
title = {The {Diophantine} equation $(bn)^{x}+(2n)^{y}=((b+2)n)^{z}$},
journal = {Colloquium Mathematicum},
pages = {95--100},
publisher = {mathdoc},
volume = {132},
number = {1},
year = {2013},
doi = {10.4064/cm132-1-7},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-7/}
}
TY - JOUR
AU - Min Tang
AU - Quan-Hui Yang
TI - The Diophantine equation $(bn)^{x}+(2n)^{y}=((b+2)n)^{z}$
JO - Colloquium Mathematicum
PY - 2013
SP - 95
EP - 100
VL - 132
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-7/
DO - 10.4064/cm132-1-7
LA - fr
ID - 10_4064_cm132_1_7
ER -
Min Tang; Quan-Hui Yang. The Diophantine equation $(bn)^{x}+(2n)^{y}=((b+2)n)^{z}$. Colloquium Mathematicum, Tome 132 (2013) no. 1, pp. 95-100. doi: 10.4064/cm132-1-7
Cité par Sources :