Cyclic mean-value inequalities for the gamma function
Colloquium Mathematicum, Tome 132 (2013) no. 1, pp. 27-34
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We present two cyclic inequalities involving the
classical $\varGamma$-function of Euler and the (unweighted) power
mean
$$
M_t(a,b)=\left(\frac{a^t+b^t}{2}\right)^{1/t} \quad (t\neq 0),
\quad\ M_0(a,b)=\sqrt{ab} \quad (a,b>0).
$$(I)
Let $2\leq n\in\mathbb{N}$ and $r\in\mathbb{R}$.
The inequality
$$
\prod_{j=1}^n \varGamma\left(\frac{1}{1+M_r(x_j,x_{j+1})}\right)
\leq \prod_{j=1}^n \varGamma\left(\frac{1}{1+x_j}\right)
\quad\ (x_{n+1}=x_1)
$$
holds for all $x_j>0$ $(j=1,\ldots ,n)$ if and only if $r\leq 0$.(II) Let $2\leq n \in\mathbb{N}$ and $s\in \mathbb{R}$. The inequality
$$
\prod_{j=1}^n \varGamma\left(\frac{1}{1+x_j}\right)
\leq \prod_{j=1}^n \varGamma\left(\frac{1}{1+M_s(x_j,x_{j+1})} \right)
\quad\ (x_{n+1}=x_1)
$$
is valid for all $x_j>0$ $(j=1,\ldots,n)$ if and only if
$$
s\geq \max_{0 x 1} P(x)=1.0309\ldots .
$$
Here,
$$
P(x)=2x-1+x(x-1)\frac{\psi'(x)}{\psi(x)}
\quad\mbox{and} \quad{\psi=\varGamma'/\varGamma}.
$$
Keywords:
present cyclic inequalities involving classical vargamma function euler unweighted power mean b frac t right quad neq quad sqrt quad leq mathbb mathbb inequality prod vargamma frac j right leq prod vargamma frac right quad holds ldots only leq leq mathbb mathbb inequality prod vargamma frac right leq prod vargamma frac j right quad valid ldots only geq max ldots here x x frac psi psi quad mbox quad psi vargamma vargamma
Affiliations des auteurs :
Horst Alzer 1
@article{10_4064_cm132_1_3,
author = {Horst Alzer},
title = {Cyclic mean-value inequalities for the gamma function},
journal = {Colloquium Mathematicum},
pages = {27--34},
publisher = {mathdoc},
volume = {132},
number = {1},
year = {2013},
doi = {10.4064/cm132-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm132-1-3/}
}
Horst Alzer. Cyclic mean-value inequalities for the gamma function. Colloquium Mathematicum, Tome 132 (2013) no. 1, pp. 27-34. doi: 10.4064/cm132-1-3
Cité par Sources :