$L^p (G, X^*)$ comme sous-espace complémenté de $L^{q}(G, X)^{*}$
Colloquium Mathematicum, Tome 131 (2013) no. 2, pp. 273-286
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $G$ be a compact metric infinite abelian group and let $X$ be a Banach space. We study the following question: if the dual $X^*$ of $X$ does not have the Radon–Nikodym property, is $L^p (G, X^*) $ complemented in $L^q (G, X)^*$, $1 p \leq \infty $, $1/p + 1/q = 1$, or, if $p = 1$, in the subspace of $C (G, X)^*$ consisting of the measures that are absolutely continuous with respect to the Haar measure?
We show that the answer is negative if $X$ is separable and does not contain $\ell ^1$, and if $1 \leq p \infty $. If $p = 1$, this answers a question of G. Emmanuele. We show that the answer is positive if $X^*$ is a Banach lattice that does not contain a copy of $c_0$, $1 \leq p \infty $. It is also positive, by a different method, if $p = \infty $ and $X^* = M(K)$, where $K$ is a compact space with a perfect subset.
Moreover, we examine whether $C_\varLambda (G, X^*)$ may be complemented in $L_\varLambda ^\infty (G, X^*)$, where $\varLambda $ is a subset of $\varGamma $, the dual group of $G$, when the space $X$ is separable and $L^1 (G, X) / L_{\varLambda ^c}^1 (G, X)$ does not contain $\ell ^1$.
Mots-clés :
compact metric infinite abelian group banach space study following question dual * does have radon nikodym property * complemented * leq infty subspace * consisting measures absolutely continuous respect haar measure answer negative separable does contain ell leq infty answers question nbsp emmanuele answer positive * banach lattice does contain copy leq infty positive different method infty * where compact space perfect subset moreover examine whether varlambda * may complemented varlambda infty * where varlambda subset vargamma dual group space separable varlambda does contain ell
Affiliations des auteurs :
Mohammad Daher 1
@article{10_4064_cm131_2_9,
author = {Mohammad Daher},
title = {$L^p (G, X^*)$ comme sous-espace compl\'ement\'e de $L^{q}(G, X)^{*}$},
journal = {Colloquium Mathematicum},
pages = {273--286},
year = {2013},
volume = {131},
number = {2},
doi = {10.4064/cm131-2-9},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm131-2-9/}
}
Mohammad Daher. $L^p (G, X^*)$ comme sous-espace complémenté de $L^{q}(G, X)^{*}$. Colloquium Mathematicum, Tome 131 (2013) no. 2, pp. 273-286. doi: 10.4064/cm131-2-9
Cité par Sources :