$L^p (G, X^*)$ comme sous-espace complémenté de $L^{q}(G, X)^{*}$
Colloquium Mathematicum, Tome 131 (2013) no. 2, pp. 273-286.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a compact metric infinite abelian group and let $X$ be a Banach space. We study the following question: if the dual $X^*$ of $X$ does not have the Radon–Nikodym property, is $L^p (G, X^*) $ complemented in $L^q (G, X)^*$, $1 p \leq \infty $, $1/p + 1/q = 1$, or, if $p = 1$, in the subspace of $C (G, X)^*$ consisting of the measures that are absolutely continuous with respect to the Haar measure? We show that the answer is negative if $X$ is separable and does not contain $\ell ^1$, and if $1 \leq p \infty $. If $p = 1$, this answers a question of G. Emmanuele. We show that the answer is positive if $X^*$ is a Banach lattice that does not contain a copy of $c_0$, $1 \leq p \infty $. It is also positive, by a different method, if $p = \infty $ and $X^* = M(K)$, where $K$ is a compact space with a perfect subset. Moreover, we examine whether $C_\varLambda (G, X^*)$ may be complemented in $L_\varLambda ^\infty (G, X^*)$, where $\varLambda $ is a subset of $\varGamma $, the dual group of $G$, when the space $X$ is separable and $L^1 (G, X) / L_{\varLambda ^c}^1 (G, X)$ does not contain $\ell ^1$.
DOI : 10.4064/cm131-2-9
Mots-clés : compact metric infinite abelian group banach space study following question dual * does have radon nikodym property * complemented * leq infty subspace * consisting measures absolutely continuous respect haar measure answer negative separable does contain ell leq infty answers question nbsp emmanuele answer positive * banach lattice does contain copy leq infty positive different method infty * where compact space perfect subset moreover examine whether varlambda * may complemented varlambda infty * where varlambda subset vargamma dual group space separable varlambda does contain ell

Mohammad Daher 1

1 32 rue Jacques Monod 77350 Le Mée-sur-Seine, France
@article{10_4064_cm131_2_9,
     author = {Mohammad Daher},
     title = {$L^p (G, X^*)$ comme sous-espace compl\'ement\'e de $L^{q}(G, X)^{*}$},
     journal = {Colloquium Mathematicum},
     pages = {273--286},
     publisher = {mathdoc},
     volume = {131},
     number = {2},
     year = {2013},
     doi = {10.4064/cm131-2-9},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm131-2-9/}
}
TY  - JOUR
AU  - Mohammad Daher
TI  - $L^p (G, X^*)$ comme sous-espace complémenté de $L^{q}(G, X)^{*}$
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 273
EP  - 286
VL  - 131
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm131-2-9/
DO  - 10.4064/cm131-2-9
LA  - fr
ID  - 10_4064_cm131_2_9
ER  - 
%0 Journal Article
%A Mohammad Daher
%T $L^p (G, X^*)$ comme sous-espace complémenté de $L^{q}(G, X)^{*}$
%J Colloquium Mathematicum
%D 2013
%P 273-286
%V 131
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm131-2-9/
%R 10.4064/cm131-2-9
%G fr
%F 10_4064_cm131_2_9
Mohammad Daher. $L^p (G, X^*)$ comme sous-espace complémenté de $L^{q}(G, X)^{*}$. Colloquium Mathematicum, Tome 131 (2013) no. 2, pp. 273-286. doi : 10.4064/cm131-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm131-2-9/

Cité par Sources :