On sequentially Ramsey sets
Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 141-148
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider sequentially completely Ramsey and sequentially nowhere Ramsey sets on $\omega ^\omega $ with the topology generated by a free filter $\mathcal F$ on $\omega $. We prove that if $\mathcal F$ is an ultrafilter, then the $\sigma $-algebra of Baire sets is the $\sigma $-algebra $S_{\mathcal F}\mathcal {CR}$ of sequentially completely Ramsey sets. Further we study additivity and cofinality of the $\sigma $-ideal $S_{\mathcal F}\mathcal {CR}^0$ of sequentially nowhere Ramsey sets. We prove that if $\mathcal F$ is a $P(\mathfrak b)$-ultrafilter then ${\rm add}(S_{\mathcal F}\mathcal {CR}^0)=\mathfrak b$, and if $\mathcal F$ is a $P$-ultrafilter then ${\rm cof}(S_{\mathcal F}\mathcal {CR}^0)$ is the point $\pi $-character of the space $\operatorname {Seq(\mathcal F)}$.
Keywords:
consider sequentially completely ramsey sequentially nowhere ramsey sets omega omega topology generated filter mathcal omega prove mathcal ultrafilter sigma algebra baire sets sigma algebra mathcal mathcal sequentially completely ramsey sets further study additivity cofinality sigma ideal mathcal mathcal sequentially nowhere ramsey sets prove mathcal mathfrak ultrafilter mathcal mathcal mathfrak mathcal p ultrafilter cof mathcal mathcal point character space operatorname seq mathcal
Affiliations des auteurs :
Anna Brzeska 1
@article{10_4064_cm131_1_12,
author = {Anna Brzeska},
title = {On sequentially {Ramsey} sets},
journal = {Colloquium Mathematicum},
pages = {141--148},
publisher = {mathdoc},
volume = {131},
number = {1},
year = {2013},
doi = {10.4064/cm131-1-12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-12/}
}
Anna Brzeska. On sequentially Ramsey sets. Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 141-148. doi: 10.4064/cm131-1-12
Cité par Sources :