Some remarks on the dyadic Rademacher maximal function
Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 113-128.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Properties of a maximal function for vector-valued martingales were studied by the author in an earlier paper. Restricting here to the dyadic setting, we prove the equivalence between (weighted) $L^p$ inequalities and weak type estimates, and discuss an extension to the case of locally finite Borel measures on $\mathbb {R}^n$. In addition, to compensate for the lack of an $L^\infty $ inequality, we derive a suitable $\rm {BMO}$ estimate. Different dyadic systems in different dimensions are also considered.
DOI : 10.4064/cm131-1-10
Keywords: properties maximal function vector valued martingales studied author earlier paper restricting here dyadic setting prove equivalence between weighted inequalities weak type estimates discuss extension locally finite borel measures mathbb addition compensate lack infty inequality derive suitable bmo estimate different dyadic systems different dimensions considered

Mikko Kemppainen 1

1 Department of Mathematics and Statistics University of Helsinki FI-00014 Helsinki, Finland
@article{10_4064_cm131_1_10,
     author = {Mikko Kemppainen},
     title = {Some remarks on the
 dyadic {Rademacher} maximal function},
     journal = {Colloquium Mathematicum},
     pages = {113--128},
     publisher = {mathdoc},
     volume = {131},
     number = {1},
     year = {2013},
     doi = {10.4064/cm131-1-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-10/}
}
TY  - JOUR
AU  - Mikko Kemppainen
TI  - Some remarks on the
 dyadic Rademacher maximal function
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 113
EP  - 128
VL  - 131
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-10/
DO  - 10.4064/cm131-1-10
LA  - en
ID  - 10_4064_cm131_1_10
ER  - 
%0 Journal Article
%A Mikko Kemppainen
%T Some remarks on the
 dyadic Rademacher maximal function
%J Colloquium Mathematicum
%D 2013
%P 113-128
%V 131
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-10/
%R 10.4064/cm131-1-10
%G en
%F 10_4064_cm131_1_10
Mikko Kemppainen. Some remarks on the
 dyadic Rademacher maximal function. Colloquium Mathematicum, Tome 131 (2013) no. 1, pp. 113-128. doi : 10.4064/cm131-1-10. http://geodesic.mathdoc.fr/articles/10.4064/cm131-1-10/

Cité par Sources :