Optimal weighted harmonic interpolations
between Seiffert means
Colloquium Mathematicum, Tome 130 (2013) no. 2, pp. 265-279
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We provide a set of optimal estimates of the form $$ \frac {1-\mu }{\mathcal {A}(x,y)}+ \frac {\mu }{\mathcal {M}(x,y)}\leq \frac {1}{\mathcal {B}(x,y)}\leq \frac {1-\nu }{\mathcal {A}(x,y)}+ \frac {\nu }{\mathcal {M}(x,y)} $$ where $\mathcal {A}\mathcal {B}$ are two of the Seiffert means $L,P,M,T$, while $\mathcal {M}$ is another mean greater than the two.
Keywords:
provide set optimal estimates form frac mathcal frac mathcal leq frac mathcal leq frac mathcal frac mathcal where mathcal mathcal seiffert means t while mathcal another mean greater
Affiliations des auteurs :
Alfred Witkowski 1
@article{10_4064_cm130_2_8,
author = {Alfred Witkowski},
title = {Optimal weighted harmonic interpolations
between {Seiffert} means},
journal = {Colloquium Mathematicum},
pages = {265--279},
publisher = {mathdoc},
volume = {130},
number = {2},
year = {2013},
doi = {10.4064/cm130-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-8/}
}
TY - JOUR AU - Alfred Witkowski TI - Optimal weighted harmonic interpolations between Seiffert means JO - Colloquium Mathematicum PY - 2013 SP - 265 EP - 279 VL - 130 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-8/ DO - 10.4064/cm130-2-8 LA - en ID - 10_4064_cm130_2_8 ER -
Alfred Witkowski. Optimal weighted harmonic interpolations between Seiffert means. Colloquium Mathematicum, Tome 130 (2013) no. 2, pp. 265-279. doi: 10.4064/cm130-2-8
Cité par Sources :