Optimal weighted harmonic interpolations between Seiffert means
Colloquium Mathematicum, Tome 130 (2013) no. 2, pp. 265-279.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We provide a set of optimal estimates of the form $$ \frac {1-\mu }{\mathcal {A}(x,y)}+ \frac {\mu }{\mathcal {M}(x,y)}\leq \frac {1}{\mathcal {B}(x,y)}\leq \frac {1-\nu }{\mathcal {A}(x,y)}+ \frac {\nu }{\mathcal {M}(x,y)} $$ where $\mathcal {A}\mathcal {B}$ are two of the Seiffert means $L,P,M,T$, while $\mathcal {M}$ is another mean greater than the two.
DOI : 10.4064/cm130-2-8
Keywords: provide set optimal estimates form frac mathcal frac mathcal leq frac mathcal leq frac mathcal frac mathcal where mathcal mathcal seiffert means t while mathcal another mean greater

Alfred Witkowski 1

1 Institute of Mathematics and Physics University of Technology and Life Sciences Al. Prof. Kaliskiego 7 85-789 Bydgoszcz, Poland
@article{10_4064_cm130_2_8,
     author = {Alfred Witkowski},
     title = {Optimal weighted harmonic interpolations
 between {Seiffert} means},
     journal = {Colloquium Mathematicum},
     pages = {265--279},
     publisher = {mathdoc},
     volume = {130},
     number = {2},
     year = {2013},
     doi = {10.4064/cm130-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-8/}
}
TY  - JOUR
AU  - Alfred Witkowski
TI  - Optimal weighted harmonic interpolations
 between Seiffert means
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 265
EP  - 279
VL  - 130
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-8/
DO  - 10.4064/cm130-2-8
LA  - en
ID  - 10_4064_cm130_2_8
ER  - 
%0 Journal Article
%A Alfred Witkowski
%T Optimal weighted harmonic interpolations
 between Seiffert means
%J Colloquium Mathematicum
%D 2013
%P 265-279
%V 130
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-8/
%R 10.4064/cm130-2-8
%G en
%F 10_4064_cm130_2_8
Alfred Witkowski. Optimal weighted harmonic interpolations
 between Seiffert means. Colloquium Mathematicum, Tome 130 (2013) no. 2, pp. 265-279. doi : 10.4064/cm130-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm130-2-8/

Cité par Sources :