On the size of $L(1,\chi)$ and S. Chowla's hypothesis implying that $L(1,\chi)>0$ for $s>0$ and for real characters $\chi$
Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 79-90
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give explicit constants $\kappa$ such that if $\chi$ is a
real non-principal Dirichlet character for which $L(1,\chi )
\le\kappa$, then Chowla's hypothesis is not satisfied and we
cannot use Chowla's method for proving that $L(s,\chi )>0$ for
$s>0$. These constants are larger than the previous ones
$\kappa =1-\log 2=0.306\ldots$ and $\kappa =0.367\ldots$ we obtained elsewhere.
Keywords:
explicit constants kappa chi real non principal dirichlet character which chi kappa chowlas hypothesis satisfied cannot chowlas method proving chi these constants larger previous kappa log ldots kappa ldots obtained elsewhere
Affiliations des auteurs :
S. Louboutin 1
@article{10_4064_cm130_1_8,
author = {S. Louboutin},
title = {On the size of $L(1,\chi)$ and {S.} {Chowla's} hypothesis implying that $L(1,\chi)>0$ for $s>0$ and for real characters $\chi$},
journal = {Colloquium Mathematicum},
pages = {79--90},
publisher = {mathdoc},
volume = {130},
number = {1},
year = {2013},
doi = {10.4064/cm130-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-8/}
}
TY - JOUR AU - S. Louboutin TI - On the size of $L(1,\chi)$ and S. Chowla's hypothesis implying that $L(1,\chi)>0$ for $s>0$ and for real characters $\chi$ JO - Colloquium Mathematicum PY - 2013 SP - 79 EP - 90 VL - 130 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-8/ DO - 10.4064/cm130-1-8 LA - en ID - 10_4064_cm130_1_8 ER -
%0 Journal Article %A S. Louboutin %T On the size of $L(1,\chi)$ and S. Chowla's hypothesis implying that $L(1,\chi)>0$ for $s>0$ and for real characters $\chi$ %J Colloquium Mathematicum %D 2013 %P 79-90 %V 130 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-8/ %R 10.4064/cm130-1-8 %G en %F 10_4064_cm130_1_8
S. Louboutin. On the size of $L(1,\chi)$ and S. Chowla's hypothesis implying that $L(1,\chi)>0$ for $s>0$ and for real characters $\chi$. Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 79-90. doi: 10.4064/cm130-1-8
Cité par Sources :