Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
S. Louboutin 1
@article{10_4064_cm130_1_8, author = {S. Louboutin}, title = {On the size of $L(1,\chi)$ and {S.} {Chowla's} hypothesis implying that $L(1,\chi)>0$ for $s>0$ and for real characters $\chi$}, journal = {Colloquium Mathematicum}, pages = {79--90}, publisher = {mathdoc}, volume = {130}, number = {1}, year = {2013}, doi = {10.4064/cm130-1-8}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-8/} }
TY - JOUR AU - S. Louboutin TI - On the size of $L(1,\chi)$ and S. Chowla's hypothesis implying that $L(1,\chi)>0$ for $s>0$ and for real characters $\chi$ JO - Colloquium Mathematicum PY - 2013 SP - 79 EP - 90 VL - 130 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-8/ DO - 10.4064/cm130-1-8 LA - en ID - 10_4064_cm130_1_8 ER -
%0 Journal Article %A S. Louboutin %T On the size of $L(1,\chi)$ and S. Chowla's hypothesis implying that $L(1,\chi)>0$ for $s>0$ and for real characters $\chi$ %J Colloquium Mathematicum %D 2013 %P 79-90 %V 130 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-8/ %R 10.4064/cm130-1-8 %G en %F 10_4064_cm130_1_8
S. Louboutin. On the size of $L(1,\chi)$ and S. Chowla's hypothesis implying that $L(1,\chi)>0$ for $s>0$ and for real characters $\chi$. Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 79-90. doi : 10.4064/cm130-1-8. http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-8/
Cité par Sources :