Arithmetic theory of harmonic numbers (II)
Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 67-78
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For $k=1,2,\ldots$ let $H_k$ denote the harmonic number
$\sum_{j=1}^k 1/j$. In this paper we establish some new congruences
involving harmonic numbers. For example, we show that for any prime
$p>3$ we have
$$\def\f#1#2{\frac{#1}{#2}}\sum_{k=1}^{p-1}\f{H_k}{k2^k}\equiv\f7{24}pB_{p-3}\pmod{p^2},\quad \ \sum_{k=1}^{p-1}\f{H_{k,2}}{k2^k}\equiv-\f 38B_{p-3}\pmod{p},$$
and
$$\sum_{k=1}^{p-1}\f{H_{k,2n}^2}{k^{2n}}\equiv\f{\binom{6n+1}{2n-1}+n}{6n+1}pB_{p-1-6n} \pmod{p^2}$$
for any positive integer $n(p-1)/6$, where $B_0,B_1,B_2,\ldots$ are
Bernoulli numbers, and $H_{k,m}:=\sum_{j=1}^k 1/j^m$.
Keywords:
ldots denote harmonic number sum paper establish congruences involving harmonic numbers example prime have def frac sum p equiv p pmod quad sum p equiv p pmod sum p equiv binom n p pmod positive integer p where ldots bernoulli numbers sum
Affiliations des auteurs :
Zhi-Wei Sun 1 ; Li-Lu Zhao 2
@article{10_4064_cm130_1_7,
author = {Zhi-Wei Sun and Li-Lu Zhao},
title = {Arithmetic theory of harmonic numbers {(II)}},
journal = {Colloquium Mathematicum},
pages = {67--78},
publisher = {mathdoc},
volume = {130},
number = {1},
year = {2013},
doi = {10.4064/cm130-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-7/}
}
Zhi-Wei Sun; Li-Lu Zhao. Arithmetic theory of harmonic numbers (II). Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 67-78. doi: 10.4064/cm130-1-7
Cité par Sources :