Arithmetic theory of harmonic numbers (II)
Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 67-78.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For $k=1,2,\ldots$ let $H_k$ denote the harmonic number $\sum_{j=1}^k 1/j$. In this paper we establish some new congruences involving harmonic numbers. For example, we show that for any prime $p>3$ we have $$\def\f#1#2{\frac{#1}{#2}}\sum_{k=1}^{p-1}\f{H_k}{k2^k}\equiv\f7{24}pB_{p-3}\pmod{p^2},\quad \ \sum_{k=1}^{p-1}\f{H_{k,2}}{k2^k}\equiv-\f 38B_{p-3}\pmod{p},$$ and $$\sum_{k=1}^{p-1}\f{H_{k,2n}^2}{k^{2n}}\equiv\f{\binom{6n+1}{2n-1}+n}{6n+1}pB_{p-1-6n} \pmod{p^2}$$ for any positive integer $n(p-1)/6$, where $B_0,B_1,B_2,\ldots$ are Bernoulli numbers, and $H_{k,m}:=\sum_{j=1}^k 1/j^m$.
DOI : 10.4064/cm130-1-7
Keywords: ldots denote harmonic number sum paper establish congruences involving harmonic numbers example prime have def frac sum p equiv p pmod quad sum p equiv p pmod sum p equiv binom n p pmod positive integer p where ldots bernoulli numbers sum

Zhi-Wei Sun 1 ; Li-Lu Zhao 2

1 Department of Mathematics Nanjing University Nanjing 210093, People's Republic of China
2 School of Mathematics Hefei University of Technology Hefei 230009, People's Republic of China
@article{10_4064_cm130_1_7,
     author = {Zhi-Wei Sun and Li-Lu Zhao},
     title = {Arithmetic theory of harmonic numbers {(II)}},
     journal = {Colloquium Mathematicum},
     pages = {67--78},
     publisher = {mathdoc},
     volume = {130},
     number = {1},
     year = {2013},
     doi = {10.4064/cm130-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-7/}
}
TY  - JOUR
AU  - Zhi-Wei Sun
AU  - Li-Lu Zhao
TI  - Arithmetic theory of harmonic numbers (II)
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 67
EP  - 78
VL  - 130
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-7/
DO  - 10.4064/cm130-1-7
LA  - en
ID  - 10_4064_cm130_1_7
ER  - 
%0 Journal Article
%A Zhi-Wei Sun
%A Li-Lu Zhao
%T Arithmetic theory of harmonic numbers (II)
%J Colloquium Mathematicum
%D 2013
%P 67-78
%V 130
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-7/
%R 10.4064/cm130-1-7
%G en
%F 10_4064_cm130_1_7
Zhi-Wei Sun; Li-Lu Zhao. Arithmetic theory of harmonic numbers (II). Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 67-78. doi : 10.4064/cm130-1-7. http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-7/

Cité par Sources :