Exact Kronecker constants of Hadamard sets
Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 39-49.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A set $S$ of integers is called $\varepsilon $-Kronecker if every function on $S$ of modulus one can be approximated uniformly to within $\varepsilon $ by a character$.$ The least such $\varepsilon $ is called the $\varepsilon $-Kronecker constant, $\kappa(S)$. The angular Kronecker constant is the unique real number $\alpha(S)\in [0,1/2]$ such that $ \kappa(S)=| \!\exp(2\pi i\alpha(S))-1 |.$ We show that for integers $m>1$ and $d \ge 1$, $$ \alpha\{1,m,\ldots,m^{d-1}\}=\frac{m^{d-1}-1}{2(m^d-1)}\quad \text{and}\quad \alpha\{1,m,m^2,\ldots\}=1/(2m). $$
DOI : 10.4064/cm130-1-4
Keywords: set integers called varepsilon kronecker every function modulus approximated uniformly within varepsilon character least varepsilon called varepsilon kronecker constant kappa angular kronecker constant unique real number alpha kappa exp alpha integers alpha ldots d frac d d quad text quad alpha ldots

Kathryn E. Hare 1 ; L. Thomas Ramsey 2

1 Department of Pure Mathematics University of Waterloo Waterloo, Ont. Canada, N2L 3G1
2 Department of Mathematics University of Hawaii at Manoa Honolulu, HI 96822, U.S.A.
@article{10_4064_cm130_1_4,
     author = {Kathryn E. Hare and L. Thomas Ramsey},
     title = {Exact {Kronecker} constants of {Hadamard} sets},
     journal = {Colloquium Mathematicum},
     pages = {39--49},
     publisher = {mathdoc},
     volume = {130},
     number = {1},
     year = {2013},
     doi = {10.4064/cm130-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-4/}
}
TY  - JOUR
AU  - Kathryn E. Hare
AU  - L. Thomas Ramsey
TI  - Exact Kronecker constants of Hadamard sets
JO  - Colloquium Mathematicum
PY  - 2013
SP  - 39
EP  - 49
VL  - 130
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-4/
DO  - 10.4064/cm130-1-4
LA  - en
ID  - 10_4064_cm130_1_4
ER  - 
%0 Journal Article
%A Kathryn E. Hare
%A L. Thomas Ramsey
%T Exact Kronecker constants of Hadamard sets
%J Colloquium Mathematicum
%D 2013
%P 39-49
%V 130
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-4/
%R 10.4064/cm130-1-4
%G en
%F 10_4064_cm130_1_4
Kathryn E. Hare; L. Thomas Ramsey. Exact Kronecker constants of Hadamard sets. Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 39-49. doi : 10.4064/cm130-1-4. http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-4/

Cité par Sources :