Exact Kronecker constants of Hadamard sets
Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 39-49
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A set $S$ of integers is called $\varepsilon $-Kronecker if every function
on $S$ of modulus one can be approximated uniformly to within $\varepsilon $
by a character$.$ The least such $\varepsilon $ is called the
$\varepsilon $-Kronecker constant, $\kappa(S)$. The angular Kronecker constant is the unique real number $\alpha(S)\in [0,1/2]$ such that
$ \kappa(S)=| \!\exp(2\pi i\alpha(S))-1 |.$
We show that for integers $m>1$ and $d \ge 1$,
$$
\alpha\{1,m,\ldots,m^{d-1}\}=\frac{m^{d-1}-1}{2(m^d-1)}\quad \text{and}\quad
\alpha\{1,m,m^2,\ldots\}=1/(2m).
$$
Keywords:
set integers called varepsilon kronecker every function modulus approximated uniformly within varepsilon character least varepsilon called varepsilon kronecker constant kappa angular kronecker constant unique real number alpha kappa exp alpha integers alpha ldots d frac d d quad text quad alpha ldots
Affiliations des auteurs :
Kathryn E. Hare 1 ; L. Thomas Ramsey 2
@article{10_4064_cm130_1_4,
author = {Kathryn E. Hare and L. Thomas Ramsey},
title = {Exact {Kronecker} constants of {Hadamard} sets},
journal = {Colloquium Mathematicum},
pages = {39--49},
publisher = {mathdoc},
volume = {130},
number = {1},
year = {2013},
doi = {10.4064/cm130-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-4/}
}
TY - JOUR AU - Kathryn E. Hare AU - L. Thomas Ramsey TI - Exact Kronecker constants of Hadamard sets JO - Colloquium Mathematicum PY - 2013 SP - 39 EP - 49 VL - 130 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm130-1-4/ DO - 10.4064/cm130-1-4 LA - en ID - 10_4064_cm130_1_4 ER -
Kathryn E. Hare; L. Thomas Ramsey. Exact Kronecker constants of Hadamard sets. Colloquium Mathematicum, Tome 130 (2013) no. 1, pp. 39-49. doi: 10.4064/cm130-1-4
Cité par Sources :