Weaker forms of continuity and vector-valued Riemann integration
Colloquium Mathematicum, Tome 129 (2012) no. 1, pp. 1-6
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It was proved by Kadets that a weak$^{*}$-continuous function on $[0,1]$ taking values in the dual of a Banach space $X$ is Riemann-integrable precisely when $X$ is finite-dimensional. In this note, we prove a Fréchet-space analogue of this result by showing that the Riemann integrability holds exactly when the underlying Fréchet space is Montel.
Keywords:
proved kadets weak * continuous function taking values dual banach space nbsp riemann integrable precisely finite dimensional note prove chet space analogue result showing riemann integrability holds exactly underlying chet space montel
Affiliations des auteurs :
M. A. Sofi 1
@article{10_4064_cm129_1_1,
author = {M. A. Sofi},
title = {Weaker forms of continuity and vector-valued {Riemann} integration},
journal = {Colloquium Mathematicum},
pages = {1--6},
publisher = {mathdoc},
volume = {129},
number = {1},
year = {2012},
doi = {10.4064/cm129-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm129-1-1/}
}
M. A. Sofi. Weaker forms of continuity and vector-valued Riemann integration. Colloquium Mathematicum, Tome 129 (2012) no. 1, pp. 1-6. doi: 10.4064/cm129-1-1
Cité par Sources :