Density of some sequences modulo $1$
Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 237-244.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Recently, Cilleruelo, Kumchev, Luca, Rué and Shparlinski proved that for each integer $a \geq 2$ the sequence of fractional parts $\{a^n/n\}_{n=1}^{\infty}$ is everywhere dense in the interval $[0,1]$. We prove a similar result for all Pisot numbers and Salem numbers $\alpha$ and show that for each $c>0$ and each sufficiently large $N$, every subinterval of $[0,1]$ of length $cN^{-0.475}$ contains at least one fractional part $\{Q(\alpha^n)/n\}$, where $Q$ is a nonconstant polynomial in $\mathbb Z[z]$ and $n$ is an integer satisfying $1 \leq n \leq N$.
DOI : 10.4064/cm128-2-9
Keywords: recently cilleruelo kumchev luca shparlinski proved each integer geq sequence fractional parts infty everywhere dense interval prove similar result pisot numbers salem numbers alpha each each sufficiently large every subinterval length contains least fractional part alpha where nonconstant polynomial mathbb integer satisfying leq leq

Artūras Dubickas 1

1 Department of Mathematics and Informatics Vilnius University Naugarduko 24 Vilnius LT-03225, Lithuania
@article{10_4064_cm128_2_9,
     author = {Art\={u}ras Dubickas},
     title = {Density of some sequences modulo $1$},
     journal = {Colloquium Mathematicum},
     pages = {237--244},
     publisher = {mathdoc},
     volume = {128},
     number = {2},
     year = {2012},
     doi = {10.4064/cm128-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-9/}
}
TY  - JOUR
AU  - Artūras Dubickas
TI  - Density of some sequences modulo $1$
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 237
EP  - 244
VL  - 128
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-9/
DO  - 10.4064/cm128-2-9
LA  - en
ID  - 10_4064_cm128_2_9
ER  - 
%0 Journal Article
%A Artūras Dubickas
%T Density of some sequences modulo $1$
%J Colloquium Mathematicum
%D 2012
%P 237-244
%V 128
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-9/
%R 10.4064/cm128-2-9
%G en
%F 10_4064_cm128_2_9
Artūras Dubickas. Density of some sequences modulo $1$. Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 237-244. doi : 10.4064/cm128-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-9/

Cité par Sources :