Density of some sequences modulo $1$
Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 237-244
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Recently, Cilleruelo, Kumchev, Luca, Rué and Shparlinski proved
that for each integer $a \geq 2$ the sequence of fractional parts
$\{a^n/n\}_{n=1}^{\infty}$ is everywhere dense in the interval
$[0,1]$. We prove a similar result for all Pisot numbers and Salem
numbers $\alpha$ and show that for each $c>0$ and each
sufficiently large $N$, every subinterval of $[0,1]$ of length
$cN^{-0.475}$ contains at least one fractional part
$\{Q(\alpha^n)/n\}$, where $Q$ is a nonconstant polynomial in $\mathbb Z[z]$
and $n$ is an integer satisfying $1 \leq n \leq N$.
Keywords:
recently cilleruelo kumchev luca shparlinski proved each integer geq sequence fractional parts infty everywhere dense interval prove similar result pisot numbers salem numbers alpha each each sufficiently large every subinterval length contains least fractional part alpha where nonconstant polynomial mathbb integer satisfying leq leq
Affiliations des auteurs :
Artūras Dubickas 1
@article{10_4064_cm128_2_9,
author = {Art\={u}ras Dubickas},
title = {Density of some sequences modulo $1$},
journal = {Colloquium Mathematicum},
pages = {237--244},
publisher = {mathdoc},
volume = {128},
number = {2},
year = {2012},
doi = {10.4064/cm128-2-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-9/}
}
Artūras Dubickas. Density of some sequences modulo $1$. Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 237-244. doi: 10.4064/cm128-2-9
Cité par Sources :