On the diophantine equation $x^y-y^x=c^z$
Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 277-285
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Applying results on linear forms in $p$-adic
logarithms, we prove that if
$(x,y,z)$ is a positive integer solution
to the equation $x^y-y^x=c^z$ with ${\rm gcd}(x,y)=1$ then $(x,y,z)=(2,1,k)$, $(3,
2, k)$, $k\geq 1$ if $c=1$, and either $(x,y,z)=(c^k+1,1,k)$, $k\geq 1$ or $2\leq
x y\leq\max\{1.5\times 10^{10}, c\}$ if $c\geq 2$.
Mots-clés :
applying results linear forms p adic logarithms prove positive integer solution equation y y gcd geq either geq leq leq max times geq
Affiliations des auteurs :
Zhongfeng Zhang 1 ; Jiagui Luo 1 ; Pingzhi Yuan 2
@article{10_4064_cm128_2_13,
author = {Zhongfeng Zhang and Jiagui Luo and Pingzhi Yuan},
title = {On the diophantine equation $x^y-y^x=c^z$},
journal = {Colloquium Mathematicum},
pages = {277--285},
publisher = {mathdoc},
volume = {128},
number = {2},
year = {2012},
doi = {10.4064/cm128-2-13},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-13/}
}
TY - JOUR AU - Zhongfeng Zhang AU - Jiagui Luo AU - Pingzhi Yuan TI - On the diophantine equation $x^y-y^x=c^z$ JO - Colloquium Mathematicum PY - 2012 SP - 277 EP - 285 VL - 128 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-13/ DO - 10.4064/cm128-2-13 LA - fr ID - 10_4064_cm128_2_13 ER -
Zhongfeng Zhang; Jiagui Luo; Pingzhi Yuan. On the diophantine equation $x^y-y^x=c^z$. Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 277-285. doi: 10.4064/cm128-2-13
Cité par Sources :