On the diophantine equation $x^y-y^x=c^z$
Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 277-285.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Applying results on linear forms in $p$-adic logarithms, we prove that if $(x,y,z)$ is a positive integer solution to the equation $x^y-y^x=c^z$ with ${\rm gcd}(x,y)=1$ then $(x,y,z)=(2,1,k)$, $(3, 2, k)$, $k\geq 1$ if $c=1$, and either $(x,y,z)=(c^k+1,1,k)$, $k\geq 1$ or $2\leq x y\leq\max\{1.5\times 10^{10}, c\}$ if $c\geq 2$.
DOI : 10.4064/cm128-2-13
Mots-clés : applying results linear forms p adic logarithms prove positive integer solution equation y y gcd geq either geq leq leq max times geq

Zhongfeng Zhang 1 ; Jiagui Luo 1 ; Pingzhi Yuan 2

1 School of Mathematics and Information Science Zhaoqing University 526061 Zhaoqing, P.R. China
2 Department of Mathematics South China Normal University 510631 Guangzhou, P.R. China
@article{10_4064_cm128_2_13,
     author = {Zhongfeng Zhang and Jiagui Luo and Pingzhi Yuan},
     title = {On the diophantine equation $x^y-y^x=c^z$},
     journal = {Colloquium Mathematicum},
     pages = {277--285},
     publisher = {mathdoc},
     volume = {128},
     number = {2},
     year = {2012},
     doi = {10.4064/cm128-2-13},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-13/}
}
TY  - JOUR
AU  - Zhongfeng Zhang
AU  - Jiagui Luo
AU  - Pingzhi Yuan
TI  - On the diophantine equation $x^y-y^x=c^z$
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 277
EP  - 285
VL  - 128
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-13/
DO  - 10.4064/cm128-2-13
LA  - fr
ID  - 10_4064_cm128_2_13
ER  - 
%0 Journal Article
%A Zhongfeng Zhang
%A Jiagui Luo
%A Pingzhi Yuan
%T On the diophantine equation $x^y-y^x=c^z$
%J Colloquium Mathematicum
%D 2012
%P 277-285
%V 128
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-13/
%R 10.4064/cm128-2-13
%G fr
%F 10_4064_cm128_2_13
Zhongfeng Zhang; Jiagui Luo; Pingzhi Yuan. On the diophantine equation $x^y-y^x=c^z$. Colloquium Mathematicum, Tome 128 (2012) no. 2, pp. 277-285. doi : 10.4064/cm128-2-13. http://geodesic.mathdoc.fr/articles/10.4064/cm128-2-13/

Cité par Sources :