On affinity of Peano type functions
Colloquium Mathematicum, Tome 127 (2012) no. 2, pp. 233-242
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that if $n$ is a positive integer and $2^{\aleph_0} \leq
\aleph_n$, then for every positive integer $m$ and for every real
constant $c>0$ there are functions $f_1,\dots,f_{n+m}\colon \mathbb R^n
\rightarrow \mathbb R$ such that $(f_1,\dots,f_{n+m})(\mathbb R^n)=\mathbb R^{n+m}$ and
for every $x \in \mathbb R^n$ there exists a strictly increasing sequence
$(i_1,\dots,i_n)$ of numbers from $ \{1,\dots,n+m\}$ and a $w \in
\mathbb Z^n$ such that
\[
(f_{i_1},\dots,f_{i_n})(y)=y+w \quad \mbox{for } y \in x +(-c,c)
\times \mathbb R^{n-1}.
\]
Keywords:
positive integer aleph leq aleph every positive integer every real constant there functions dots colon mathbb rightarrow mathbb dots mathbb mathbb every mathbb there exists strictly increasing sequence dots numbers dots mathbb dots quad mbox c times mathbb n
Affiliations des auteurs :
Tomasz Słonka 1
@article{10_4064_cm127_2_6,
author = {Tomasz S{\l}onka},
title = {On affinity of {Peano} type functions},
journal = {Colloquium Mathematicum},
pages = {233--242},
publisher = {mathdoc},
volume = {127},
number = {2},
year = {2012},
doi = {10.4064/cm127-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm127-2-6/}
}
Tomasz Słonka. On affinity of Peano type functions. Colloquium Mathematicum, Tome 127 (2012) no. 2, pp. 233-242. doi: 10.4064/cm127-2-6
Cité par Sources :