Theory of coverings in the study of Riemann surfaces
Colloquium Mathematicum, Tome 127 (2012) no. 2, pp. 173-184.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a $G$-covering $Y\rightarrow Y/G=X$ induced by a properly discontinuous action of a group $G$ on a topological space $Y$, there is a natural action of $\pi (X,x)$ on the set $F$ of points in $Y$ with nontrivial stabilizers in $G$. We study the covering of $X$ obtained from the universal covering of $X$ and the left action of $\pi (X,x)$ on $F$. We find a formula for the number of fixed points of an element $g\in G$ which is a generalization of Macbeath's formula applied to an automorphism of a Riemann surface. We give a new method for determining subgroups of a given Fuchsian group.
DOI : 10.4064/cm127-2-3
Keywords: g covering rightarrow induced properly discontinuous action group topological space there natural action set points nontrivial stabilizers study covering obtained universal covering action formula number fixed points element which generalization macbeaths formula applied automorphism riemann surface method determining subgroups given fuchsian group

Ewa Tyszkowska 1

1 Institute of Mathematics University of Gdańsk Wita Stwosza 57 80-952 Gdańsk, Poland
@article{10_4064_cm127_2_3,
     author = {Ewa Tyszkowska},
     title = {Theory of coverings in the study of
 {Riemann} surfaces},
     journal = {Colloquium Mathematicum},
     pages = {173--184},
     publisher = {mathdoc},
     volume = {127},
     number = {2},
     year = {2012},
     doi = {10.4064/cm127-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm127-2-3/}
}
TY  - JOUR
AU  - Ewa Tyszkowska
TI  - Theory of coverings in the study of
 Riemann surfaces
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 173
EP  - 184
VL  - 127
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm127-2-3/
DO  - 10.4064/cm127-2-3
LA  - en
ID  - 10_4064_cm127_2_3
ER  - 
%0 Journal Article
%A Ewa Tyszkowska
%T Theory of coverings in the study of
 Riemann surfaces
%J Colloquium Mathematicum
%D 2012
%P 173-184
%V 127
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm127-2-3/
%R 10.4064/cm127-2-3
%G en
%F 10_4064_cm127_2_3
Ewa Tyszkowska. Theory of coverings in the study of
 Riemann surfaces. Colloquium Mathematicum, Tome 127 (2012) no. 2, pp. 173-184. doi : 10.4064/cm127-2-3. http://geodesic.mathdoc.fr/articles/10.4064/cm127-2-3/

Cité par Sources :