On sums of binomial coefficients modulo $p^2$
Colloquium Mathematicum, Tome 127 (2012) no. 1, pp. 39-54
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $p$ be an odd prime and let $a$ be a positive integer. In this paper
we investigate the sum $\def\bi#1#2{\bigg({#1\atop#2}\bigg)}\sum_{k=0}^{p^a-1}\big({hp^a-1\atop k} \big)
\big({{2k}\atop k}\big)/m^k$ mod $p^2$,
where $h$ and $m$ are $p$-adic integers with $m\not\equiv0 \pmod{p}$. For example, we show that if
$h\not\equiv0 \pmod{p}$ and $p^a>3$, then
$$\def\bi#1#2{\bigg({#1\atop#2}\bigg)}
\sum_{k=0}^{p^a-1}\bi{hp^a-1}k\bi{2k}k\biggl(-\frac h2\biggr)^k
\equiv \bigg(\frac{1-2h}{p^a}\bigg)\bigg(1+h \bigg( \bigg(4-\frac 2h\bigg)^{p-1}-1\bigg)\bigg)\pmod{p^2},
$$
where $(\frac{\cdot}{\cdot})$ denotes the Jacobi symbol.
Here is another remarkable congruence:
If $p^a>3$ then
$$\def\bi#1#2{\bigg({#1\atop#2}\bigg)}
\sum_{k=0}^{p^a-1}\bi{p^a-1}k\bi{2k}k(-1)^k\equiv 3^{p-1}
\bigg(\frac{p^a}3\bigg) \pmod{p^2}.
$$
Mots-clés :
odd prime positive integer paper investigate sum def bigg atop bigg sum a a atop atop mod where p adic integers equiv pmod example equiv pmod def bigg atop bigg sum a a biggl frac biggr equiv bigg frac bigg bigg bigg bigg frac bigg p bigg bigg pmod where frac cdot cdot denotes jacobi symbol here another remarkable congruence def bigg atop bigg sum a a equiv p bigg frac bigg pmod
Affiliations des auteurs :
Zhi-Wei Sun 1
@article{10_4064_cm127_1_3,
author = {Zhi-Wei Sun},
title = {On sums of binomial coefficients modulo $p^2$},
journal = {Colloquium Mathematicum},
pages = {39--54},
publisher = {mathdoc},
volume = {127},
number = {1},
year = {2012},
doi = {10.4064/cm127-1-3},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm127-1-3/}
}
Zhi-Wei Sun. On sums of binomial coefficients modulo $p^2$. Colloquium Mathematicum, Tome 127 (2012) no. 1, pp. 39-54. doi: 10.4064/cm127-1-3
Cité par Sources :