On sums of binomial coefficients modulo $p^2$
Colloquium Mathematicum, Tome 127 (2012) no. 1, pp. 39-54.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $p$ be an odd prime and let $a$ be a positive integer. In this paper we investigate the sum $\def\bi#1#2{\bigg({#1\atop#2}\bigg)}\sum_{k=0}^{p^a-1}\big({hp^a-1\atop k} \big) \big({{2k}\atop k}\big)/m^k$ mod $p^2$, where $h$ and $m$ are $p$-adic integers with $m\not\equiv0 \pmod{p}$. For example, we show that if $h\not\equiv0 \pmod{p}$ and $p^a>3$, then $$\def\bi#1#2{\bigg({#1\atop#2}\bigg)} \sum_{k=0}^{p^a-1}\bi{hp^a-1}k\bi{2k}k\biggl(-\frac h2\biggr)^k \equiv \bigg(\frac{1-2h}{p^a}\bigg)\bigg(1+h \bigg( \bigg(4-\frac 2h\bigg)^{p-1}-1\bigg)\bigg)\pmod{p^2}, $$ where $(\frac{\cdot}{\cdot})$ denotes the Jacobi symbol. Here is another remarkable congruence: If $p^a>3$ then $$\def\bi#1#2{\bigg({#1\atop#2}\bigg)} \sum_{k=0}^{p^a-1}\bi{p^a-1}k\bi{2k}k(-1)^k\equiv 3^{p-1} \bigg(\frac{p^a}3\bigg) \pmod{p^2}. $$
DOI : 10.4064/cm127-1-3
Mots-clés : odd prime positive integer paper investigate sum def bigg atop bigg sum a a atop atop mod where p adic integers equiv pmod example equiv pmod def bigg atop bigg sum a a biggl frac biggr equiv bigg frac bigg bigg bigg bigg frac bigg p bigg bigg pmod where frac cdot cdot denotes jacobi symbol here another remarkable congruence def bigg atop bigg sum a a equiv p bigg frac bigg pmod

Zhi-Wei Sun 1

1 Department of Mathematics Nanjing University Nanjing 210093, People's Republic of China
@article{10_4064_cm127_1_3,
     author = {Zhi-Wei Sun},
     title = {On sums of binomial coefficients modulo $p^2$},
     journal = {Colloquium Mathematicum},
     pages = {39--54},
     publisher = {mathdoc},
     volume = {127},
     number = {1},
     year = {2012},
     doi = {10.4064/cm127-1-3},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm127-1-3/}
}
TY  - JOUR
AU  - Zhi-Wei Sun
TI  - On sums of binomial coefficients modulo $p^2$
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 39
EP  - 54
VL  - 127
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm127-1-3/
DO  - 10.4064/cm127-1-3
LA  - fr
ID  - 10_4064_cm127_1_3
ER  - 
%0 Journal Article
%A Zhi-Wei Sun
%T On sums of binomial coefficients modulo $p^2$
%J Colloquium Mathematicum
%D 2012
%P 39-54
%V 127
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm127-1-3/
%R 10.4064/cm127-1-3
%G fr
%F 10_4064_cm127_1_3
Zhi-Wei Sun. On sums of binomial coefficients modulo $p^2$. Colloquium Mathematicum, Tome 127 (2012) no. 1, pp. 39-54. doi : 10.4064/cm127-1-3. http://geodesic.mathdoc.fr/articles/10.4064/cm127-1-3/

Cité par Sources :