$D_{p}(3)$ $(p \geq 5)$ can be characterized by its order components
Colloquium Mathematicum, Tome 126 (2012) no. 2, pp. 257-268.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a finite group, and $M=D_{p}(3)$ ($p \geq 3$). It is proved that $G\cong M$ if $G$ and $M$ have the same order components.
DOI : 10.4064/cm126-2-8
Keywords: finite group geq proved cong have order components

Huaguo Shi 1 ; Zhangjia Han 2 ; Guiyun Chen 3

1 Sichuan Vocational and Technical College 629000, Sichuan, P.R. China
2 School of Mathematics Chengdu University of Information Technology 610225, Sichuan, P.R. China
3 School of Mathematics and Statistics Southwest University 400715, Chongqing, P.R. China
@article{10_4064_cm126_2_8,
     author = {Huaguo Shi and Zhangjia Han and Guiyun Chen},
     title = {$D_{p}(3)$ $(p \geq 5)$ can be characterized by
 its order components},
     journal = {Colloquium Mathematicum},
     pages = {257--268},
     publisher = {mathdoc},
     volume = {126},
     number = {2},
     year = {2012},
     doi = {10.4064/cm126-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-8/}
}
TY  - JOUR
AU  - Huaguo Shi
AU  - Zhangjia Han
AU  - Guiyun Chen
TI  - $D_{p}(3)$ $(p \geq 5)$ can be characterized by
 its order components
JO  - Colloquium Mathematicum
PY  - 2012
SP  - 257
EP  - 268
VL  - 126
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-8/
DO  - 10.4064/cm126-2-8
LA  - en
ID  - 10_4064_cm126_2_8
ER  - 
%0 Journal Article
%A Huaguo Shi
%A Zhangjia Han
%A Guiyun Chen
%T $D_{p}(3)$ $(p \geq 5)$ can be characterized by
 its order components
%J Colloquium Mathematicum
%D 2012
%P 257-268
%V 126
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-8/
%R 10.4064/cm126-2-8
%G en
%F 10_4064_cm126_2_8
Huaguo Shi; Zhangjia Han; Guiyun Chen. $D_{p}(3)$ $(p \geq 5)$ can be characterized by
 its order components. Colloquium Mathematicum, Tome 126 (2012) no. 2, pp. 257-268. doi : 10.4064/cm126-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm126-2-8/

Cité par Sources :